{"title":"Sum structures in abelian groups","authors":"Robert Haas","doi":"10.1016/j.exco.2023.100101","DOIUrl":null,"url":null,"abstract":"<div><p>Any set <span><math><mi>S</mi></math></span> of elements from an abelian group produces a graph with colored edges <span><math><mi>G</mi></math></span>(S), with its points the elements of <span><math><mi>S</mi></math></span>, and the edge between points <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span> assigned for its “color” the sum <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span>. Since any pair of identically colored edges is equivalent to an equation <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>+</mo><msup><mrow><mi>Q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span>, the geometric—combinatorial figure <span><math><mi>G</mi></math></span>(S) is thus equivalent to a system of linear equations. This article derives elementary properties of such “sum cographs”, including forced or forbidden configurations, and then catalogues the 54 possible sum cographs on up to 6 points. Larger sum cograph structures also exist: Points <span><math><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></math></span> in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> close up into a “Fibonacci cycle”–i.e. <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mi>k</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span> for all integers <span><math><mrow><mi>i</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, and then <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>–provided that <span><math><mrow><mi>m</mi><mo>=</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a Lucas prime, in which case actually <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> for all <span><math><mrow><mi>i</mi><mo>≥</mo><mn>0</mn></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"3 ","pages":"Article 100101"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X23000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Any set of elements from an abelian group produces a graph with colored edges (S), with its points the elements of , and the edge between points and assigned for its “color” the sum . Since any pair of identically colored edges is equivalent to an equation , the geometric—combinatorial figure (S) is thus equivalent to a system of linear equations. This article derives elementary properties of such “sum cographs”, including forced or forbidden configurations, and then catalogues the 54 possible sum cographs on up to 6 points. Larger sum cograph structures also exist: Points in close up into a “Fibonacci cycle”–i.e. , , for all integers , and then and –provided that is a Lucas prime, in which case actually for all .