{"title":"Comparative effects of micro vs. submicron emulsions on textural properties of myofibrillar protein composite gels","authors":"Jiseon Lee , Mi-Jung Choi , Youling L. Xiong","doi":"10.1016/j.foostr.2023.100353","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to investigate the impact of emulsion particle size (micro vs. submicron) on the physicochemical and rheological properties of myofibrillar protein (MP) gels. MP-based oil-in-water micro-emulsions (∼2,091 nm) and submicron-emulsions (∼522 nm) were compared with each other and with lecithin-stabilized micro-emulsions (∼1,330 nm) and submicron-emulsions (∼543 nm). Emulsion particle size, ζ-potential, and morphological properties using transmission and confocal microscopies) were measured. Additionally, dynamic rheological behavior, mechanical strength, water-holding capacity (WHC), water mobility, and protein secondary structures of the emulsion gels containing 2.5% protein and 5% oil) were analyzed. The results showed that emulsion droplet size had no significant effect on gel strength and storage modulus, regardless of the surfactants used. However, the MP-coated submicron-emulsion exhibited a greater improvement in gel WHC (p < 0.05) compared to its micro-emulsion counterpart. Overall, emulsion gels displayed greater strength than oil-free control gels. MP-based emulsions proved more effective than lecithin-stabilized emulsions in modifying the gelling properties, primarily due to the formation of a visible interfacial protein film that prevented oil droplet aggregation. Based on these findings, protein-based emulsions were preferred over lecithin-based emulsions, with MP submicron-emulsions offering the advantage of enhanced moisture retention in cooked MP gels.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"38 ","pages":"Article 100353"},"PeriodicalIF":5.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329123000461","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the impact of emulsion particle size (micro vs. submicron) on the physicochemical and rheological properties of myofibrillar protein (MP) gels. MP-based oil-in-water micro-emulsions (∼2,091 nm) and submicron-emulsions (∼522 nm) were compared with each other and with lecithin-stabilized micro-emulsions (∼1,330 nm) and submicron-emulsions (∼543 nm). Emulsion particle size, ζ-potential, and morphological properties using transmission and confocal microscopies) were measured. Additionally, dynamic rheological behavior, mechanical strength, water-holding capacity (WHC), water mobility, and protein secondary structures of the emulsion gels containing 2.5% protein and 5% oil) were analyzed. The results showed that emulsion droplet size had no significant effect on gel strength and storage modulus, regardless of the surfactants used. However, the MP-coated submicron-emulsion exhibited a greater improvement in gel WHC (p < 0.05) compared to its micro-emulsion counterpart. Overall, emulsion gels displayed greater strength than oil-free control gels. MP-based emulsions proved more effective than lecithin-stabilized emulsions in modifying the gelling properties, primarily due to the formation of a visible interfacial protein film that prevented oil droplet aggregation. Based on these findings, protein-based emulsions were preferred over lecithin-based emulsions, with MP submicron-emulsions offering the advantage of enhanced moisture retention in cooked MP gels.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.