R-LIOM: Reflectivity-Aware LiDAR-Inertial Odometry and Mapping

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2023-10-04 DOI:10.1109/LRA.2023.3322073
Yanchao Dong;Lingxiao Li;Sixiong Xu;Wenxuan Li;Jinsong Li;Yahe Zhang;Bin He
{"title":"R-LIOM: Reflectivity-Aware LiDAR-Inertial Odometry and Mapping","authors":"Yanchao Dong;Lingxiao Li;Sixiong Xu;Wenxuan Li;Jinsong Li;Yahe Zhang;Bin He","doi":"10.1109/LRA.2023.3322073","DOIUrl":null,"url":null,"abstract":"With the advent of solid-state LiDAR, a series of related studies have boosted the development of Simultaneous Localization and Mapping (SLAM). However, existing methods cannot work well in indoor environments. In the letter, the reflectivity measurement of the solid-state LiDAR is exploited to improve the performance of LiDAR-Inertial Odometry and Mapping (LIOM). Firstly, a high-resolution pseudo image generation method utilizing the reflectivity measurement is proposed. With that, pseudo-visual place recognition based on point and line features is proposed for facilitating a robust and effective loop detection. Thereafter, the superkeyframe, made of scan data, point context and pseudo-visual image, and the corresponding global factor graph is presented, which gives the capability of map maintenance. Thereby, the accumulated error could be significantly reduced by timely loop detection and superkeyframe-based optimation. Additionally, the reflectivity measurement is also employed to refine residual computation and local mapping modules. Validation experiments show the effectiveness of the proposed R-LIOM system.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 11","pages":"7743-7750"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10271540/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of solid-state LiDAR, a series of related studies have boosted the development of Simultaneous Localization and Mapping (SLAM). However, existing methods cannot work well in indoor environments. In the letter, the reflectivity measurement of the solid-state LiDAR is exploited to improve the performance of LiDAR-Inertial Odometry and Mapping (LIOM). Firstly, a high-resolution pseudo image generation method utilizing the reflectivity measurement is proposed. With that, pseudo-visual place recognition based on point and line features is proposed for facilitating a robust and effective loop detection. Thereafter, the superkeyframe, made of scan data, point context and pseudo-visual image, and the corresponding global factor graph is presented, which gives the capability of map maintenance. Thereby, the accumulated error could be significantly reduced by timely loop detection and superkeyframe-based optimation. Additionally, the reflectivity measurement is also employed to refine residual computation and local mapping modules. Validation experiments show the effectiveness of the proposed R-LIOM system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R-LIOM:反射感知激光雷达惯性里程测量和测绘
随着固态激光雷达的出现,一系列相关研究推动了同步定位与测绘(SLAM)的发展。然而,现有的方法在室内环境中不能很好地工作。在信中,固态激光雷达的反射率测量被用来提高激光雷达惯性测距和测绘(LIOM)的性能。首先,提出了一种利用反射率测量的高分辨率伪图像生成方法。在此基础上,提出了基于点和线特征的伪视觉位置识别方法,以促进鲁棒有效的环路检测。然后,给出了由扫描数据、点上下文和伪视觉图像组成的超关键帧,以及相应的全局因子图,从而提供了地图维护的能力。因此,通过及时的循环检测和基于超关键帧的优化,可以显著减少累积误差。此外,反射率测量还用于细化残差计算和局部映射模块。验证实验表明了所提出的R-LIOM系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1