Learning-Based Propulsion Control for Amphibious Quadruped Robots With Dynamic Adaptation to Changing Environment

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2023-10-11 DOI:10.1109/LRA.2023.3323893
Qingfeng Yao;Linghan Meng;Qifeng Zhang;Jing Zhao;Joni Pajarinen;Xiaohui Wang;Zhibin Li;Cong Wang
{"title":"Learning-Based Propulsion Control for Amphibious Quadruped Robots With Dynamic Adaptation to Changing Environment","authors":"Qingfeng Yao;Linghan Meng;Qifeng Zhang;Jing Zhao;Joni Pajarinen;Xiaohui Wang;Zhibin Li;Cong Wang","doi":"10.1109/LRA.2023.3323893","DOIUrl":null,"url":null,"abstract":"This letter proposes a learning-based adaptive propulsion control (APC) method for a quadruped robot integrated with thrusters in amphibious environments, allowing it to move efficiently in water while maintaining its ground locomotion capabilities. We designed the specific reinforcement learning method to train the neural network to perform the vector propulsion control. Our approach coordinates the legs and propeller, enabling the robot to achieve speed and trajectory tracking tasks in the presence of actuator failures and unknown disturbances. Our simulated validations of the robot in water demonstrate the effectiveness of the trained neural network to predict the disturbances and actuator failures based on historical information, showing that the framework is adaptable to changing environments and is suitable for use in dynamically changing situations. Our proposed approach is suited to the hardware augmentation of quadruped robots to create avenues in the field of amphibious robotics and expand the use of quadruped robots in various applications.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"8 12","pages":"7889-7896"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10278475/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter proposes a learning-based adaptive propulsion control (APC) method for a quadruped robot integrated with thrusters in amphibious environments, allowing it to move efficiently in water while maintaining its ground locomotion capabilities. We designed the specific reinforcement learning method to train the neural network to perform the vector propulsion control. Our approach coordinates the legs and propeller, enabling the robot to achieve speed and trajectory tracking tasks in the presence of actuator failures and unknown disturbances. Our simulated validations of the robot in water demonstrate the effectiveness of the trained neural network to predict the disturbances and actuator failures based on historical information, showing that the framework is adaptable to changing environments and is suitable for use in dynamically changing situations. Our proposed approach is suited to the hardware augmentation of quadruped robots to create avenues in the field of amphibious robotics and expand the use of quadruped robots in various applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态适应环境变化的两栖四足机器人基于学习的推进控制
这封信为两栖环境中与推进器集成的四足机器人提出了一种基于学习的自适应推进控制(APC)方法,使其能够在水中高效移动,同时保持地面运动能力。我们设计了特定的强化学习方法来训练神经网络来执行矢量推进控制。我们的方法协调腿和螺旋桨,使机器人能够在存在致动器故障和未知干扰的情况下实现速度和轨迹跟踪任务。我们对机器人在水中的模拟验证证明了训练的神经网络基于历史信息预测扰动和执行器故障的有效性,表明该框架适用于不断变化的环境,适合在动态变化的情况下使用。我们提出的方法适用于四足机器人的硬件增强,以在水陆两栖机器人领域开辟道路,并扩大四足机器人在各种应用中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1