{"title":"Improvement of light-load efficiency using width-switching scheme for CMOS transistors","authors":"S. Musunuri;P.L. Chapman","doi":"10.1109/LPEL.2005.859769","DOIUrl":null,"url":null,"abstract":"This paper presents a derivation of the optimum width of transistors to minimize losses in monolithic CMOS buck converters. The high optimal width requires a tapered inverter chain gate driver. A technique called \"width switching\" is presented. It can be integrated with the inverter chain to maintain maximum converter efficiency over a wide power range, particularly at light load. Experimental results are presented from a chip containing CMOS transistors optimized for power levels between 50 mW and 200 mW. Challenges in implementing the width-switching scheme and other applications are also discussed.","PeriodicalId":100635,"journal":{"name":"IEEE Power Electronics Letters","volume":"3 3","pages":"105-110"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LPEL.2005.859769","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power Electronics Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/1525005/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86
Abstract
This paper presents a derivation of the optimum width of transistors to minimize losses in monolithic CMOS buck converters. The high optimal width requires a tapered inverter chain gate driver. A technique called "width switching" is presented. It can be integrated with the inverter chain to maintain maximum converter efficiency over a wide power range, particularly at light load. Experimental results are presented from a chip containing CMOS transistors optimized for power levels between 50 mW and 200 mW. Challenges in implementing the width-switching scheme and other applications are also discussed.