Bruno Lavigne;Mathieu Lefrançois;Elodie Balmefrezol;Christine Bresson;Francesco Vacondio;Jean-Christophe Antona;Emmanuel Seve;Olivier Rival
{"title":"System design tool for high bit rate terrestrial transmission systems with coherent detection","authors":"Bruno Lavigne;Mathieu Lefrançois;Elodie Balmefrezol;Christine Bresson;Francesco Vacondio;Jean-Christophe Antona;Emmanuel Seve;Olivier Rival","doi":"10.1002/bltj.21637","DOIUrl":null,"url":null,"abstract":"Coherent detection offers the ability to compensate for linear transmission impairments such as fiber chromatic dispersion and polarization-mode dispersion in the digital domain, thereby enabling dispersion-uncompensated optical transmission for high performance and high cost effectiveness. In dispersion-uncompensated transmission systems, the statistics of optical nonlinearity induced distortions have been proven to be essentially Gaussian-distributed, and new physical models have emerged showing profound differences with respect to legacy systems based on direct detection. From such differences stems the need to adapt the design tool to capture these new propagation properties. In that respect, we propose a model for performance prediction, which is used to derive a simple yet effective feasibility parameter to be embedded in the design tool. The feasibility parameter is experimentally validated with real time product transponders, and realistic system configurations: a precision of ±0.5 dB is achieved for 40 Gb/s, 100 Gb/s and 400 Gb/s coherent channels, which represents an improvement of more than 3 dB over the design tool using the nonlinear phase shift as the criterion.","PeriodicalId":55592,"journal":{"name":"Bell Labs Technical Journal","volume":"18 3","pages":"251-266"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bltj.21637","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bell Labs Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/6772720/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 21
Abstract
Coherent detection offers the ability to compensate for linear transmission impairments such as fiber chromatic dispersion and polarization-mode dispersion in the digital domain, thereby enabling dispersion-uncompensated optical transmission for high performance and high cost effectiveness. In dispersion-uncompensated transmission systems, the statistics of optical nonlinearity induced distortions have been proven to be essentially Gaussian-distributed, and new physical models have emerged showing profound differences with respect to legacy systems based on direct detection. From such differences stems the need to adapt the design tool to capture these new propagation properties. In that respect, we propose a model for performance prediction, which is used to derive a simple yet effective feasibility parameter to be embedded in the design tool. The feasibility parameter is experimentally validated with real time product transponders, and realistic system configurations: a precision of ±0.5 dB is achieved for 40 Gb/s, 100 Gb/s and 400 Gb/s coherent channels, which represents an improvement of more than 3 dB over the design tool using the nonlinear phase shift as the criterion.
期刊介绍:
The Bell Labs Technical Journal (BLTJ) highlights key research and development activities across Alcatel-Lucent — within Bell Labs, within the company’s CTO organizations, and in cross-functional projects and initiatives. It publishes papers and letters by Alcatel-Lucent researchers, scientists, and engineers and co-authors affiliated with universities, government and corporate research labs, and customer companies. Its aim is to promote progress in communications fields worldwide; Bell Labs innovations enable Alcatel-Lucent to deliver leading products, solutions, and services that meet customers’ mission critical needs.