A method-of-lines formulation for a model of reactive settling in tanks with varying cross-sectional area

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED IMA Journal of Applied Mathematics Pub Date : 2021-04-01 DOI:10.1093/imamat/hxab012
Raimund Bürger;Julio Careaga;Stefan Diehl
{"title":"A method-of-lines formulation for a model of reactive settling in tanks with varying cross-sectional area","authors":"Raimund Bürger;Julio Careaga;Stefan Diehl","doi":"10.1093/imamat/hxab012","DOIUrl":null,"url":null,"abstract":"Reactive settling denotes the process of sedimentation of small solid particles dispersed in a viscous fluid with simultaneous reactions between the components that constitute the solid and liquid phases. This process is of particular importance for the simulation and control of secondary settling tanks (SSTs) in water resource recovery facilities (WRRFs), formerly known as wastewater treatment plants. A spatially 1D model of reactive settling in an SST is formulated by combining a mechanistic model of sedimentation with compression with a model of biokinetic reactions. In addition, the cross-sectional area of the tank is allowed to vary as a function of height. The final model is a system of strongly degenerate parabolic, nonlinear partial differential equations that include discontinuous coefficients to describe the feed, underflow and overflow mechanisms, as well as singular source terms that model the feed mechanism. A finite difference scheme for the final model is developed by first deriving a method-of-lines formulation (discrete in space, continuous in time) and then passing to a fully discrete scheme by a time discretization. The advantage of this formulation is its compatibility with common practice in development of software for WRRFs. The main mathematical result is an invariant-region property, which implies that physically relevant numerical solutions are produced. Simulations of denitrification in SSTs in WRRFs illustrate the model and its discretization.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":"86 1","pages":"514-546"},"PeriodicalIF":1.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imamat/hxab012","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514748/","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

Reactive settling denotes the process of sedimentation of small solid particles dispersed in a viscous fluid with simultaneous reactions between the components that constitute the solid and liquid phases. This process is of particular importance for the simulation and control of secondary settling tanks (SSTs) in water resource recovery facilities (WRRFs), formerly known as wastewater treatment plants. A spatially 1D model of reactive settling in an SST is formulated by combining a mechanistic model of sedimentation with compression with a model of biokinetic reactions. In addition, the cross-sectional area of the tank is allowed to vary as a function of height. The final model is a system of strongly degenerate parabolic, nonlinear partial differential equations that include discontinuous coefficients to describe the feed, underflow and overflow mechanisms, as well as singular source terms that model the feed mechanism. A finite difference scheme for the final model is developed by first deriving a method-of-lines formulation (discrete in space, continuous in time) and then passing to a fully discrete scheme by a time discretization. The advantage of this formulation is its compatibility with common practice in development of software for WRRFs. The main mathematical result is an invariant-region property, which implies that physically relevant numerical solutions are produced. Simulations of denitrification in SSTs in WRRFs illustrate the model and its discretization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变截面储罐反应沉降模型的线性公式化方法
反应沉降是指分散在粘性流体中的小固体颗粒的沉降过程,构成固相和液相的组分之间同时发生反应。该过程对于水资源回收设施(WRRF)中的二次沉淀池(SST)的模拟和控制具有特别重要的意义,该设施以前被称为废水处理厂。通过将沉降和压缩的机理模型与生物动力学反应模型相结合,建立了SST中反应沉降的空间1D模型。此外,允许储罐的横截面积作为高度的函数而变化。最后的模型是一个强退化抛物型非线性偏微分方程组,该方程组包括描述进给、下溢和溢流机制的不连续系数,以及对进给机制建模的奇异源项。最终模型的有限差分格式是通过首先推导线公式化方法(空间上离散,时间上连续),然后通过时间离散化传递到完全离散格式来开发的。这种公式的优点是它与WRRF软件开发中的常见做法兼容。主要的数学结果是不变区域性质,这意味着产生了物理相关的数值解。WRRFs中SST中反硝化作用的模拟说明了该模型及其离散化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
32
审稿时长
24 months
期刊介绍: The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered. The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.
期刊最新文献
The impact of confinement on the deformation of an elastic particle under axisymmetric tube flow On the P-Irreducibility of Quintic Positive Polynomials An explicit Maclaurin series solution to non-autonomous and non-homogeneous evolution equation, Omega Calculus, and associated applications Can physics-informed neural networks beat the finite element method? Trust your source: quantifying source condition elements for variational regularisation methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1