Marvin Fritz;Christina Kuttler;Mabel L Rajendran;Barbara Wohlmuth;Laura Scarabosio
{"title":"On a subdiffusive tumour growth model with fractional time derivative","authors":"Marvin Fritz;Christina Kuttler;Mabel L Rajendran;Barbara Wohlmuth;Laura Scarabosio","doi":"10.1093/imamat/hxab009","DOIUrl":null,"url":null,"abstract":"In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9514755/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15
Abstract
In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo–Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretized system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.