New Bounds on the Size of Binary Codes With Large Minimum Distance

James Chin-Jen Pang;Hessam Mahdavifar;S. Sandeep Pradhan
{"title":"New Bounds on the Size of Binary Codes With Large Minimum Distance","authors":"James Chin-Jen Pang;Hessam Mahdavifar;S. Sandeep Pradhan","doi":"10.1109/JSAIT.2023.3295836","DOIUrl":null,"url":null,"abstract":"Let <inline-formula> <tex-math notation=\"LaTeX\">$A(n, d)$ </tex-math></inline-formula> denote the maximum size of a binary code of length <inline-formula> <tex-math notation=\"LaTeX\">$n$ </tex-math></inline-formula> and minimum Hamming distance <inline-formula> <tex-math notation=\"LaTeX\">$d$ </tex-math></inline-formula>. Studying <inline-formula> <tex-math notation=\"LaTeX\">$A(n, d)$ </tex-math></inline-formula>, including efforts to determine it as well to derive bounds on <inline-formula> <tex-math notation=\"LaTeX\">$A(n, d)$ </tex-math></inline-formula> for large <inline-formula> <tex-math notation=\"LaTeX\">$n$ </tex-math></inline-formula>’s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on <inline-formula> <tex-math notation=\"LaTeX\">$A(n, d)$ </tex-math></inline-formula> in the large-minimum distance regime, in particular, when <inline-formula> <tex-math notation=\"LaTeX\">$d = n/2 - \\Omega (\\sqrt {n})$ </tex-math></inline-formula>. We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length <inline-formula> <tex-math notation=\"LaTeX\">$n= 2^{m} -1$ </tex-math></inline-formula>, distance <inline-formula> <tex-math notation=\"LaTeX\">$d \\geq n/2 - 2^{c-1}\\sqrt {n}$ </tex-math></inline-formula>, and size <inline-formula> <tex-math notation=\"LaTeX\">$n^{c+1/2}$ </tex-math></inline-formula>, for any <inline-formula> <tex-math notation=\"LaTeX\">$m\\geq 4$ </tex-math></inline-formula> and any integer <inline-formula> <tex-math notation=\"LaTeX\">$c$ </tex-math></inline-formula> with <inline-formula> <tex-math notation=\"LaTeX\">$0 \\leq c \\leq m/2 - 1$ </tex-math></inline-formula>. These code parameters are slightly worse than those of the Delsarte–Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance <inline-formula> <tex-math notation=\"LaTeX\">$d$ </tex-math></inline-formula>, in particular, when <inline-formula> <tex-math notation=\"LaTeX\">$d = n/2 - \\Omega (n^{2/3})$ </tex-math></inline-formula>. Furthermore, by leveraging a Fourier-analytic view of Delsarte’s linear program, upper bounds on <inline-formula> <tex-math notation=\"LaTeX\">$A(n, \\left \\lceil{ n/2 - \\rho \\sqrt {n}\\, }\\right \\rceil)$ </tex-math></inline-formula> with <inline-formula> <tex-math notation=\"LaTeX\">$\\rho \\in (0.5, 9.5)$ </tex-math></inline-formula> are obtained that scale polynomially in <inline-formula> <tex-math notation=\"LaTeX\">$n$ </tex-math></inline-formula>. To the best of authors’ knowledge, the upper bound due to Barg and Nogin (2006) is the only previously known upper bound that scale polynomially in <inline-formula> <tex-math notation=\"LaTeX\">$n$ </tex-math></inline-formula> in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"219-231"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10185152/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $A(n, d)$ denote the maximum size of a binary code of length $n$ and minimum Hamming distance $d$ . Studying $A(n, d)$ , including efforts to determine it as well to derive bounds on $A(n, d)$ for large $n$ ’s, is one of the most fundamental subjects in coding theory. In this paper, we explore new lower and upper bounds on $A(n, d)$ in the large-minimum distance regime, in particular, when $d = n/2 - \Omega (\sqrt {n})$ . We first provide a new construction of cyclic codes, by carefully selecting specific roots in the binary extension field for the check polynomial, with length $n= 2^{m} -1$ , distance $d \geq n/2 - 2^{c-1}\sqrt {n}$ , and size $n^{c+1/2}$ , for any $m\geq 4$ and any integer $c$ with $0 \leq c \leq m/2 - 1$ . These code parameters are slightly worse than those of the Delsarte–Goethals (DG) codes that provide the previously known best lower bound in the large-minimum distance regime. However, using a similar and extended code construction technique we show a sequence of cyclic codes that improve upon DG codes and provide the best lower bound in a narrower range of the minimum distance $d$ , in particular, when $d = n/2 - \Omega (n^{2/3})$ . Furthermore, by leveraging a Fourier-analytic view of Delsarte’s linear program, upper bounds on $A(n, \left \lceil{ n/2 - \rho \sqrt {n}\, }\right \rceil)$ with $\rho \in (0.5, 9.5)$ are obtained that scale polynomially in $n$ . To the best of authors’ knowledge, the upper bound due to Barg and Nogin (2006) is the only previously known upper bound that scale polynomially in $n$ in this regime. We numerically demonstrate that our upper bound improves upon the Barg-Nogin upper bound in the specified high-minimum distance regime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有大最小距离的二进制码大小的新界
设$A(n,d)$表示长度为$n$和最小汉明距离为$d$的二进制码的最大大小。研究$A(n,d)$,包括确定它的努力,以及推导大型$n$的$A(n,d)美元的边界,是编码理论中最基本的主题之一。在本文中,我们探索了大最小距离域中$A(n,d)$的新的下界和上界,特别是当$d=n/2-\Omega(\sqrt{n})$时。我们首先提供了一种新的循环码构造,通过在校验多项式的二进制扩展域中仔细选择特定的根,长度为$n=2^{m}-1$,距离为$d\geqn/2-2^{c-1}\sqrt{n}$,大小为$n^{c+1/2}$,用于任何$m\geq4$和具有$0\leqc\leqm/2-1$的任何整数$c$。这些代码参数比Delsarte–Goethals(DG)代码稍差,后者在大的最小距离范围内提供了以前已知的最佳下界。然而,使用类似的扩展码构造技术,我们展示了一系列循环码,这些循环码改进了DG码,并在最小距离$d$的较窄范围内提供了最佳下界,特别是当$d=n/2-\Omega(n^{2/3})$时。此外,通过利用Delsarte线性规划的傅立叶分析视图,获得了$a(n,\left\lceil{n/2-\rho\sqrt{n}\,}\right\lceil)$与$\rho\in(0.5,9.5)$的上界,该上界以$n$为多项式标度。据作者所知,Barg和Nogin(2006)提出的上限是此前已知的唯一一个在该制度下以$n$为单位进行多项式缩放的上限。我们数值证明,在指定的高最小距离范围内,我们的上界改进了Barg-Nogin上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Source Coding for Markov Sources With Partial Memoryless Side Information at the Decoder Deviation From Maximal Entanglement for Mid-Spectrum Eigenstates of Local Hamiltonians Statistical Inference With Limited Memory: A Survey Tightening Continuity Bounds for Entropies and Bounds on Quantum Capacities Dynamic Group Testing to Control and Monitor Disease Progression in a Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1