{"title":"Energy-Efficient Transmission Strategy for Delay Tolerable Services in NOMA-Based Downlink With Two Users","authors":"Mengmeng Bai;Rui Zhu;Jianxin Guo;Feng Wang;Liping Wang;Hangjie Zhu;Lei Huang;Yushuai Zhang","doi":"10.1109/ACCESS.2023.3323930","DOIUrl":null,"url":null,"abstract":"With the continuous development of the communication industry, there is a shift in real-time services from 4G networks to Delay Tolerable (DT) services in the context of 5G/B5G networks. Additionally, energy consumption control poses significant challenges in the current communication industry. Therefore, we study algorithms and schemes to improve the Energy Efficiency (EE) of DT services in the context of Non-Orthogonal Multiple Access (NOMA) downlink two-user communication system.First, we transformed the EE enhancement problem into a convex optimization problem based on transmission power by derivation. Secondly, we propose to use Approximate Statistical Dynamic Programming (ASDP) algorithm, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO) to solve the problem that convex optimization cannot be decided in real time. Finally, we perform an interpretability analysis on whether the decision schemes of the agents trained by the DDPG algorithm and the PPO algorithm are reasonable. The simulation results show that the decisions made by the agent trained by the DDPG algorithm perform better compared to the ASDP algorithm and the PPO algorithm.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"11 ","pages":"113227-113243"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6287639/10005208/10278391.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10278391/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous development of the communication industry, there is a shift in real-time services from 4G networks to Delay Tolerable (DT) services in the context of 5G/B5G networks. Additionally, energy consumption control poses significant challenges in the current communication industry. Therefore, we study algorithms and schemes to improve the Energy Efficiency (EE) of DT services in the context of Non-Orthogonal Multiple Access (NOMA) downlink two-user communication system.First, we transformed the EE enhancement problem into a convex optimization problem based on transmission power by derivation. Secondly, we propose to use Approximate Statistical Dynamic Programming (ASDP) algorithm, Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO) to solve the problem that convex optimization cannot be decided in real time. Finally, we perform an interpretability analysis on whether the decision schemes of the agents trained by the DDPG algorithm and the PPO algorithm are reasonable. The simulation results show that the decisions made by the agent trained by the DDPG algorithm perform better compared to the ASDP algorithm and the PPO algorithm.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.