{"title":"Attack-Resilient Supervisory Control of Discrete-Event Systems: A Finite-State Transducer Approach","authors":"Yu Wang;Alper Kamil Bozkurt;Nathan Smith;Miroslav Pajic","doi":"10.1109/OJCSYS.2023.3290408","DOIUrl":null,"url":null,"abstract":"Resilience to sensor and actuator attacks is a major concern in the supervisory control of discrete events in cyber-physical systems (CPS). In this work, we propose a new framework to design supervisors for CPS under attacks using finite-state transducers (FSTs) to model the effects of the discrete events. FSTs can capture a general class of regular-rewriting attacks in which an attacker can nondeterministically rewrite sensing/actuation events according to a given regular relation. These include common insertion, deletion, event-wise replacement, and finite-memory replay attacks. We propose new theorems and algorithms with polynomial complexity to design resilient supervisors against these attacks. We also develop an open-source tool in Python based on the results and illustrate its applicability through a case study.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"208-220"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552933/9973428/10167797.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10167797/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Resilience to sensor and actuator attacks is a major concern in the supervisory control of discrete events in cyber-physical systems (CPS). In this work, we propose a new framework to design supervisors for CPS under attacks using finite-state transducers (FSTs) to model the effects of the discrete events. FSTs can capture a general class of regular-rewriting attacks in which an attacker can nondeterministically rewrite sensing/actuation events according to a given regular relation. These include common insertion, deletion, event-wise replacement, and finite-memory replay attacks. We propose new theorems and algorithms with polynomial complexity to design resilient supervisors against these attacks. We also develop an open-source tool in Python based on the results and illustrate its applicability through a case study.