Validity Analysis of Network Big Data

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Web Engineering Pub Date : 2023-03-01 DOI:10.13052/jwe1540-9589.2234
Peng Wang;Huaxia Lv;Xiaojing Zheng;Wenhui Ma;Weijin Wang
{"title":"Validity Analysis of Network Big Data","authors":"Peng Wang;Huaxia Lv;Xiaojing Zheng;Wenhui Ma;Weijin Wang","doi":"10.13052/jwe1540-9589.2234","DOIUrl":null,"url":null,"abstract":"False data in network big data has led to considerable ineffectiveness in perceiving the property of fact. Correct conclusions can be drawn only by accurately identifying and eliminating these false data. In other words, analysis is the premise to reaching a correct conclusion. This paper develops a big data network dissemination model based on the properties of the network. We also analyze the attributes of the big data random complex network based on the revised F-J model. Then, based on the scale-free nature of network big data, the evolution law of connected giant components and Bayesian inference, we propose an identification method of effective data in networks. Finally, after obtaining the real data, we analyze the dissemination and evolution characteristics of the network big data. The results show that if some online users intentionally spread false data on a large-scale website, the entire network data becomes false, despite a minimal probability of choosing these dissemination sources.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"22 3","pages":"465-496"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/10243554/10243555/10247498.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10247498/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

False data in network big data has led to considerable ineffectiveness in perceiving the property of fact. Correct conclusions can be drawn only by accurately identifying and eliminating these false data. In other words, analysis is the premise to reaching a correct conclusion. This paper develops a big data network dissemination model based on the properties of the network. We also analyze the attributes of the big data random complex network based on the revised F-J model. Then, based on the scale-free nature of network big data, the evolution law of connected giant components and Bayesian inference, we propose an identification method of effective data in networks. Finally, after obtaining the real data, we analyze the dissemination and evolution characteristics of the network big data. The results show that if some online users intentionally spread false data on a large-scale website, the entire network data becomes false, despite a minimal probability of choosing these dissemination sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络大数据的有效性分析
网络大数据中的虚假数据导致人们对事实属性的感知相当低效。只有准确识别和消除这些虚假数据,才能得出正确的结论。换句话说,分析是得出正确结论的前提。本文根据大数据网络的特性,建立了大数据网络传播模型。在修正的F-J模型的基础上,我们还分析了大数据随机复杂网络的属性。然后,基于网络大数据的无标度性、连通巨分量的演化规律和贝叶斯推理,提出了一种网络中有效数据的识别方法。最后,在获得真实数据后,我们分析了网络大数据的传播和演变特征。结果表明,如果一些在线用户有意在大型网站上传播虚假数据,那么整个网络的数据都会变成虚假的,尽管选择这些传播来源的可能性很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Web Engineering
Journal of Web Engineering 工程技术-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
62
审稿时长
9 months
期刊介绍: The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.
期刊最新文献
Design and Optimization of Hybrid End-to-End Encryption Architecture for a Secure Web Application System Web-Engineered ECC-Based Group Key Protocol for Secure and Scalable Metering Communication A Study on the Comparative Analysis of Embedded and Zero Watermarking for Unstructured Image Protection Knowledge Interaction and Diffusion Augmentation for Knowledge Graph Recommendation Reinforcement Learning-Driven Intelligent Monitoring for Data Integrity in Smart Electricity Fee Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1