On the Minimum Weight Codewords of PAC Codes: The Impact of Pre-Transformation

Mohammad Rowshan;Jinhong Yuan
{"title":"On the Minimum Weight Codewords of PAC Codes: The Impact of Pre-Transformation","authors":"Mohammad Rowshan;Jinhong Yuan","doi":"10.1109/JSAIT.2023.3312678","DOIUrl":null,"url":null,"abstract":"The minimum Hamming distance of a linear block code is the smallest number of bit changes required to transform one valid codeword into another. The code’s minimum distance determines the code’s error-correcting capabilities. Furthermore, The number of minimum weight codewords, a.k.a. error coefficient, gives a good comparative measure for the block error rate (BLER) of linear block codes with identical minimum distance, in particular at a high SNR regime under maximum likelihood (ML) decoding. A code with a smaller error coefficient would give a lower BLER. Unlike polar codes, a closed-form expression for the enumeration of the error coefficient of polarization-adjusted convolutional (PAC) codes is yet unknown. As PAC codes are convolutionally pre-transformed polar codes, we study the impact of pre-transformation on polar codes in terms of minimum Hamming distance and error coefficient by partitioning the codewords into cosets. We show that the minimum distance of PAC codes does not decrease; however, the pre-transformation may reduce the error coefficient depending on the choice of convolutional polynomial. We recognize the properties of the cosets where pre-transformation is ineffective in decreasing the error coefficient, giving a lower bound for the error coefficient. Then, we propose a low-complexity enumeration method that determines the number of minimum weight codewords of PAC codes relying on the error coefficient of polar codes. That is, given the error coefficient \n<inline-formula> <tex-math>${\\mathcal {A}}_{w_{min}}$ </tex-math></inline-formula>\n of polar codes, we determine the reduction \n<inline-formula> <tex-math>$X$ </tex-math></inline-formula>\n in the error coefficient due to convolutional pre-transformation in PAC coding and subtract it from the error coefficient of polar codes, \n<inline-formula> <tex-math>${\\mathcal {A}}_{w_{min}}-X$ </tex-math></inline-formula>\n. Furthermore, we numerically analyze the tightness of the lower bound and the impact of the choice of the convolutional polynomial on the error coefficient based on the sub-patterns in the polynomial’s coefficients. Eventually, we show how we can further reduce the error coefficient in the cosets.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"487-498"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10246271/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The minimum Hamming distance of a linear block code is the smallest number of bit changes required to transform one valid codeword into another. The code’s minimum distance determines the code’s error-correcting capabilities. Furthermore, The number of minimum weight codewords, a.k.a. error coefficient, gives a good comparative measure for the block error rate (BLER) of linear block codes with identical minimum distance, in particular at a high SNR regime under maximum likelihood (ML) decoding. A code with a smaller error coefficient would give a lower BLER. Unlike polar codes, a closed-form expression for the enumeration of the error coefficient of polarization-adjusted convolutional (PAC) codes is yet unknown. As PAC codes are convolutionally pre-transformed polar codes, we study the impact of pre-transformation on polar codes in terms of minimum Hamming distance and error coefficient by partitioning the codewords into cosets. We show that the minimum distance of PAC codes does not decrease; however, the pre-transformation may reduce the error coefficient depending on the choice of convolutional polynomial. We recognize the properties of the cosets where pre-transformation is ineffective in decreasing the error coefficient, giving a lower bound for the error coefficient. Then, we propose a low-complexity enumeration method that determines the number of minimum weight codewords of PAC codes relying on the error coefficient of polar codes. That is, given the error coefficient ${\mathcal {A}}_{w_{min}}$ of polar codes, we determine the reduction $X$ in the error coefficient due to convolutional pre-transformation in PAC coding and subtract it from the error coefficient of polar codes, ${\mathcal {A}}_{w_{min}}-X$ . Furthermore, we numerically analyze the tightness of the lower bound and the impact of the choice of the convolutional polynomial on the error coefficient based on the sub-patterns in the polynomial’s coefficients. Eventually, we show how we can further reduce the error coefficient in the cosets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于PAC码的最小权值码字:预变换的影响
线性块码的最小汉明距离是将一个有效码字转换为另一个有效的码字所需的最小比特变化数。代码的最小距离决定了代码的纠错能力。此外,最小权重码字的数量,也称为误差系数,对于具有相同最小距离的线性块码的块错误率(BLER),特别是在最大似然(ML)解码下的高SNR状态下,给出了良好的比较度量。具有较小误差系数的代码将给出较低的BLER。与极性码不同,偏振调整卷积码(PAC)的误差系数的枚举的闭合形式表达式尚不清楚。由于PAC码是卷积预变换的极性码,我们通过将码字划分为陪集,从最小汉明距离和误差系数的角度研究了预变换对极性码的影响。我们证明了PAC码的最小距离没有减小;然而,根据卷积多项式的选择,预变换可以降低误差系数。我们认识到陪集的性质,其中预变换在降低误差系数方面是无效的,给出了误差系数的下界。然后,我们提出了一种低复杂度的枚举方法,该方法根据极性码的误差系数来确定PAC码的最小权值码字的数量。也就是说,给定极性码的误差系数${\mathcal{A}}_{w_{min}}$,我们确定由于PAC编码中的卷积预变换而导致的误差系数的减少$X$,并将其从极性码误差系数${\mathcal{A}}}_{w _{min}}-X$中减去。此外,基于多项式系数中的子模式,我们数值分析了下界的严密性以及卷积多项式的选择对误差系数的影响。最后,我们展示了如何进一步降低陪集中的误差系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Source Coding for Markov Sources With Partial Memoryless Side Information at the Decoder Deviation From Maximal Entanglement for Mid-Spectrum Eigenstates of Local Hamiltonians Statistical Inference With Limited Memory: A Survey Tightening Continuity Bounds for Entropies and Bounds on Quantum Capacities Dynamic Group Testing to Control and Monitor Disease Progression in a Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1