Determination of the optimal battery capacity of a PEM fuel cell vehicle taking into account recuperation and supercapacitors

Swantje C. Konradt, Hermann Rottengruber
{"title":"Determination of the optimal battery capacity of a PEM fuel cell vehicle taking into account recuperation and supercapacitors","authors":"Swantje C. Konradt,&nbsp;Hermann Rottengruber","doi":"10.1007/s41104-021-00086-1","DOIUrl":null,"url":null,"abstract":"<div><p>Proton exchange membrane (PEM) fuel cell vehicles require an electrical intermediate storage system to compensate for dynamic load requirements. That storage system uses a battery and has the task to increase tolerance to dynamic operation. In addition, energy can be recuperated and stored in supercapacitors to increase the fuel cell vehicle’s efficiency. To determine the optimal battery capacity according to the recuperation potential and possible use of a supercapacitor, a reference vehicle with PEM fuel cell was transferred to the simulation environment <i>Matlab/Simulink</i>. The model is based on a cell model describing the electrochemical and physical interactions within the cell. It has been implemented in a complete vehicle model for the representation of a fuel cell vehicle. Various legal driving cycles, such as the WLTP (“Worldwide harmonized Light Vehicles Test Procedure”), were used for the calculations. A further step sets the optimal battery capacity depending on the dynamic of the fuel cell system. With this simulation model, dynamic requirements—for the fuel cell and the associated system components—can be determined in the future, scalable for each vehicle depending on the battery capacity and recuperation potential.</p></div>","PeriodicalId":100150,"journal":{"name":"Automotive and Engine Technology","volume":"6 3-4","pages":"181 - 189"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41104-021-00086-1","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive and Engine Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41104-021-00086-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Proton exchange membrane (PEM) fuel cell vehicles require an electrical intermediate storage system to compensate for dynamic load requirements. That storage system uses a battery and has the task to increase tolerance to dynamic operation. In addition, energy can be recuperated and stored in supercapacitors to increase the fuel cell vehicle’s efficiency. To determine the optimal battery capacity according to the recuperation potential and possible use of a supercapacitor, a reference vehicle with PEM fuel cell was transferred to the simulation environment Matlab/Simulink. The model is based on a cell model describing the electrochemical and physical interactions within the cell. It has been implemented in a complete vehicle model for the representation of a fuel cell vehicle. Various legal driving cycles, such as the WLTP (“Worldwide harmonized Light Vehicles Test Procedure”), were used for the calculations. A further step sets the optimal battery capacity depending on the dynamic of the fuel cell system. With this simulation model, dynamic requirements—for the fuel cell and the associated system components—can be determined in the future, scalable for each vehicle depending on the battery capacity and recuperation potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑回收和超级电容器的PEM燃料电池车辆最佳电池容量的确定
质子交换膜(PEM)燃料电池车辆需要电气中间存储系统来补偿动态负载要求。该存储系统使用电池,其任务是增加对动态操作的容忍度。此外,能量可以回收并储存在超级电容器中,以提高燃料电池汽车的效率。为了根据超级电容器的回收潜力和可能的用途来确定最佳电池容量,将带有PEM燃料电池的参考车辆转移到仿真环境Matlab/Simulink中。该模型基于描述电池内电化学和物理相互作用的电池模型。它已经在一个完整的车辆模型中实现,用于表示燃料电池车辆。计算中使用了各种法定驾驶循环,如WLTP(“全球统一轻型车辆测试程序”)。进一步的步骤根据燃料电池系统的动态设置最佳电池容量。有了这个模拟模型,未来可以确定燃料电池和相关系统组件的动态需求,并根据电池容量和回收潜力对每辆车进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an electrochemically approximated simulation model and a hardware substitution cell approach for thermal management battery system tests A detailed comparison of ethanol–diesel direct fuel blending to conventional ethanol–diesel dual-fuel combustion Influence of the air–fuel-ratio and fuel on the reactivity of diesel soot Introducing the double validation metric for radar sensor models Chassis concept of the individually steerable five-link suspension: a novel approach to maximize the road wheel angle to improve vehicle agility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1