{"title":"Abstract meaning representation for legal documents: an empirical research on a human-annotated dataset","authors":"Sinh Trong Vu, Minh Le Nguyen, Ken Satoh","doi":"10.1007/s10506-021-09292-6","DOIUrl":null,"url":null,"abstract":"<div><p>Natural language processing techniques contribute more and more in analyzing legal documents recently, which supports the implementation of laws and rules using computers. Previous approaches in representing a legal sentence often based on logical patterns that illustrate the relations between concepts in the sentence, often consist of multiple words. Those representations cause the lack of semantic information at the word level. In our work, we aim to tackle such shortcomings by representing legal texts in the form of abstract meaning representation (AMR), a graph-based semantic representation that gains lots of polarity in NLP community recently. We present our study in AMR Parsing (producing AMR from natural language) and AMR-to-text Generation (producing natural language from AMR) specifically for legal domain. We also introduce JCivilCode, a human-annotated legal AMR dataset which was created and verified by a group of linguistic and legal experts. We conduct an empirical evaluation of various approaches in parsing and generating AMR on our own dataset and show the current challenges. Based on our observation, we propose our domain adaptation method applying in the training phase and decoding phase of a neural AMR-to-text generation model. Our method improves the quality of text generated from AMR graph compared to the baseline model. (This work is extended from our two previous papers: “An Empirical Evaluation of AMR Parsing for Legal Documents”, published in the Twelfth International Workshop on Juris-informatics (JURISIN) 2018; and “Legal Text Generation from Abstract Meaning Representation”, published in the 32nd International Conference on Legal Knowledge and Information Systems (JURIX) 2019.).</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"30 2","pages":"221 - 243"},"PeriodicalIF":3.1000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10506-021-09292-6","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-021-09292-6","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Natural language processing techniques contribute more and more in analyzing legal documents recently, which supports the implementation of laws and rules using computers. Previous approaches in representing a legal sentence often based on logical patterns that illustrate the relations between concepts in the sentence, often consist of multiple words. Those representations cause the lack of semantic information at the word level. In our work, we aim to tackle such shortcomings by representing legal texts in the form of abstract meaning representation (AMR), a graph-based semantic representation that gains lots of polarity in NLP community recently. We present our study in AMR Parsing (producing AMR from natural language) and AMR-to-text Generation (producing natural language from AMR) specifically for legal domain. We also introduce JCivilCode, a human-annotated legal AMR dataset which was created and verified by a group of linguistic and legal experts. We conduct an empirical evaluation of various approaches in parsing and generating AMR on our own dataset and show the current challenges. Based on our observation, we propose our domain adaptation method applying in the training phase and decoding phase of a neural AMR-to-text generation model. Our method improves the quality of text generated from AMR graph compared to the baseline model. (This work is extended from our two previous papers: “An Empirical Evaluation of AMR Parsing for Legal Documents”, published in the Twelfth International Workshop on Juris-informatics (JURISIN) 2018; and “Legal Text Generation from Abstract Meaning Representation”, published in the 32nd International Conference on Legal Knowledge and Information Systems (JURIX) 2019.).
期刊介绍:
Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law.
Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative
modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and
public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.