A model predictive control approach for highly automated vehicles in urban environments

Miralem Saljanin, Sven Müller, Jochen Kiebler, Jens Neubeck, Andreas Wagner
{"title":"A model predictive control approach for highly automated vehicles in urban environments","authors":"Miralem Saljanin,&nbsp;Sven Müller,&nbsp;Jochen Kiebler,&nbsp;Jens Neubeck,&nbsp;Andreas Wagner","doi":"10.1007/s41104-022-00103-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a model predictive control (MPC) approach for the lateral and longitudinal control of a highly automated electric vehicle with all-wheel drive and dual-axis steering is presented. For the prediction of state trajectories a two-track vehicle model is used. The MPC problem for trajectory tracking is formulated by controlling the front and rear steering angle as well as the individual drive torques with respect to actuator and design constraints. Beside the steering angles, the MPC controller computes the individual drive torques to not only match the reference velocity but also to support the lateral dynamics of the vehicle using torque vectoring. The MPC problem is solved using ACADOS, a software package for efficiently solving optimal control problems. The effectiveness of the proposed MPC scheme is demonstrated via simulation.</p></div>","PeriodicalId":100150,"journal":{"name":"Automotive and Engine Technology","volume":"7 1-2","pages":"105 - 113"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41104-022-00103-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automotive and Engine Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41104-022-00103-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a model predictive control (MPC) approach for the lateral and longitudinal control of a highly automated electric vehicle with all-wheel drive and dual-axis steering is presented. For the prediction of state trajectories a two-track vehicle model is used. The MPC problem for trajectory tracking is formulated by controlling the front and rear steering angle as well as the individual drive torques with respect to actuator and design constraints. Beside the steering angles, the MPC controller computes the individual drive torques to not only match the reference velocity but also to support the lateral dynamics of the vehicle using torque vectoring. The MPC problem is solved using ACADOS, a software package for efficiently solving optimal control problems. The effectiveness of the proposed MPC scheme is demonstrated via simulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市环境中高度自动化车辆的模型预测控制方法
本文提出了一种模型预测控制(MPC)方法,用于全轮驱动和双轴转向的高度自动化电动汽车的横向和纵向控制。为了预测状态轨迹,使用了双轨车辆模型。轨迹跟踪的MPC问题是通过控制前后转向角以及相对于致动器和设计约束的单个驱动转矩来制定的。除了转向角之外,MPC控制器还计算各个驱动转矩,以不仅匹配参考速度,而且使用转矩矢量来支持车辆的横向动力学。MPC问题是使用ACADOS解决的,ACADOS是一个有效解决最优控制问题的软件包。通过仿真验证了所提出的MPC方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an electrochemically approximated simulation model and a hardware substitution cell approach for thermal management battery system tests A detailed comparison of ethanol–diesel direct fuel blending to conventional ethanol–diesel dual-fuel combustion Influence of the air–fuel-ratio and fuel on the reactivity of diesel soot Introducing the double validation metric for radar sensor models Chassis concept of the individually steerable five-link suspension: a novel approach to maximize the road wheel angle to improve vehicle agility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1