Youcef Djenouri, Djamel Djenouri, Asma Belhadi, Philippe Fournier-Viger, Jerry Chun-Wei Lin
{"title":"A new framework for metaheuristic-based frequent itemset mining","authors":"Youcef Djenouri, Djamel Djenouri, Asma Belhadi, Philippe Fournier-Viger, Jerry Chun-Wei Lin","doi":"10.1007/s10489-018-1245-8","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel framework for metaheuristic-based Frequent Itemset Mining (FIM), which considers intrinsic features of the FIM problem. The framework, called META-GD, can be used to steer any metaheuristics-based FIM approach. Without loss of generality, three metaheuristics are considered in this paper, namely the genetic algorithm (GA), particle swarm optimization (PSO), and bee swarm optimization (BSO). This allows to derive three approaches, named GA-GD, PSO-GD, and BSO-GD, respectively. An extensive experimental evaluation on medium and large database instances reveal that PSO-GD outperforms state-of-the-art metaheuristic-based approaches in terms of runtime and solution quality.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"48 12","pages":"4775 - 4791"},"PeriodicalIF":3.4000,"publicationDate":"2018-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10489-018-1245-8","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-018-1245-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 19
Abstract
This paper proposes a novel framework for metaheuristic-based Frequent Itemset Mining (FIM), which considers intrinsic features of the FIM problem. The framework, called META-GD, can be used to steer any metaheuristics-based FIM approach. Without loss of generality, three metaheuristics are considered in this paper, namely the genetic algorithm (GA), particle swarm optimization (PSO), and bee swarm optimization (BSO). This allows to derive three approaches, named GA-GD, PSO-GD, and BSO-GD, respectively. An extensive experimental evaluation on medium and large database instances reveal that PSO-GD outperforms state-of-the-art metaheuristic-based approaches in terms of runtime and solution quality.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.