Significant abundances of alkaline components in the fine and coarse aerosols over a tropical rain shadow location in peninsular India

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Journal of Atmospheric Chemistry Pub Date : 2023-05-27 DOI:10.1007/s10874-023-09447-6
P. S. Soyam, P. D. Safai, S. Mukherjee, S. Kondle, S. Bankar, K. Todekar, N. Malap, D. Surendran, A. Gaikwad, S. Lohogaonkar, T. Prabhakaran
{"title":"Significant abundances of alkaline components in the fine and coarse aerosols over a tropical rain shadow location in peninsular India","authors":"P. S. Soyam,&nbsp;P. D. Safai,&nbsp;S. Mukherjee,&nbsp;S. Kondle,&nbsp;S. Bankar,&nbsp;K. Todekar,&nbsp;N. Malap,&nbsp;D. Surendran,&nbsp;A. Gaikwad,&nbsp;S. Lohogaonkar,&nbsp;T. Prabhakaran","doi":"10.1007/s10874-023-09447-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports the chemistry of fine (PM<sub>2.5</sub>) and coarse (PM<sub>10</sub>) aerosols sampled over a period of three years during 2018–2021 at a semi -arid tropical location in the rain shadow region of the peninsular India. The data is classified in to dry (December to May) and wet (June to November) periods. Scavenging effect due to rains have culminated in to less concentrations of both fine and coarse aerosols and their ionic components in the wet period. Significantly high concentrations of the crustal components such as Ca, Na, K and Mg from the local dust resulted in the alkaline pH in both dry and wet periods with Ca and Mg emerging as major neutralizing components. Overall, &lt; 20% samples of both fine and coarse aerosols depicted acidic pH. Concentration of SO<sub>4</sub> was comparatively more than NO<sub>3</sub> indicating towards more presence of stationary sources (industrial/domestic emissions) than mobile (vehicular emissions) sources. Combustion generated and highly absorbing black carbon aerosols showed high concentration during the dry period. Local activities comprising residential, agricultural, vehicular and industrial emissions were the major sources of aerosols at Solapur however, the contribution from the distant sources were also found to contribute as inferred from the cluster analysis and concentration weighted trajectories (CWT). The observed abundances of the alkaline dust aerosols that could act as cloud condensation nuclei or ice nuclei will have important implications on the studies related to cloud aerosol precipitation interaction over this region.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"80 3","pages":"191 - 209"},"PeriodicalIF":3.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-023-09447-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports the chemistry of fine (PM2.5) and coarse (PM10) aerosols sampled over a period of three years during 2018–2021 at a semi -arid tropical location in the rain shadow region of the peninsular India. The data is classified in to dry (December to May) and wet (June to November) periods. Scavenging effect due to rains have culminated in to less concentrations of both fine and coarse aerosols and their ionic components in the wet period. Significantly high concentrations of the crustal components such as Ca, Na, K and Mg from the local dust resulted in the alkaline pH in both dry and wet periods with Ca and Mg emerging as major neutralizing components. Overall, < 20% samples of both fine and coarse aerosols depicted acidic pH. Concentration of SO4 was comparatively more than NO3 indicating towards more presence of stationary sources (industrial/domestic emissions) than mobile (vehicular emissions) sources. Combustion generated and highly absorbing black carbon aerosols showed high concentration during the dry period. Local activities comprising residential, agricultural, vehicular and industrial emissions were the major sources of aerosols at Solapur however, the contribution from the distant sources were also found to contribute as inferred from the cluster analysis and concentration weighted trajectories (CWT). The observed abundances of the alkaline dust aerosols that could act as cloud condensation nuclei or ice nuclei will have important implications on the studies related to cloud aerosol precipitation interaction over this region.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在印度半岛热带雨影位置的细和粗气溶胶中碱性成分的显著丰度
本文报道了2018-2021年在印度半岛雨影区半干旱热带地区取样的三年间细颗粒物(PM2.5)和粗颗粒物(PM10)气溶胶的化学成分。数据分为干期(12月至5月)和湿期(6月至11月)。降雨的清除作用最终导致湿期细、粗气溶胶及其离子组分浓度降低。干湿期土壤中Ca、Na、K、Mg等地壳成分的浓度显著增高,导致土壤pH呈碱性,Ca、Mg是主要中和成分。总的来说,& lt;20%的细颗粒和粗颗粒气溶胶样品的ph值均为酸性。SO4的浓度相对高于NO3,表明固定源(工业/家庭排放)比移动源(车辆排放)存在更多。燃烧产生的高吸收性黑碳气溶胶在干旱期浓度较高。包括住宅、农业、车辆和工业排放在内的当地活动是Solapur气溶胶的主要来源,然而,从聚类分析和浓度加权轨迹(CWT)推断,也发现来自遥远来源的贡献。观测到的可作为云凝结核或冰核的碱性尘埃气溶胶丰度将对该地区云气溶胶降水相互作用的研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
期刊最新文献
Association between time of day and carbonaceous PM2.5 and oxidative potential in summer and winter in the Suncheon industrial area, Republic of Korea PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran Characteristics of surface air quality over provincial capital cities in Northwestern China during 2013–2020 Stable isotopic, bulk, and molecular compositions of post-monsoon biomass-burning aerosols in Delhi suggest photochemical ageing during regional transport is more pronounced than local processing A review on sequential extraction of metals bound particulate matter and their health risk assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1