Cheryl A. Kelley, Brad M. Bebout, Jeffrey P. Chanton, Angela M. Detweiler, Adrienne Frisbee, Brooke E. Nicholson, Jennifer Poole, Amanda Tazaz, Claire Winkler
{"title":"The Effect of Bacterial Sulfate Reduction Inhibition on the Production and Stable Isotopic Composition of Methane in Hypersaline Environments","authors":"Cheryl A. Kelley, Brad M. Bebout, Jeffrey P. Chanton, Angela M. Detweiler, Adrienne Frisbee, Brooke E. Nicholson, Jennifer Poole, Amanda Tazaz, Claire Winkler","doi":"10.1007/s10498-019-09362-x","DOIUrl":null,"url":null,"abstract":"<p>The aim of this research was to investigate the competition between methanogens and sulfate-reducing bacteria in hypersaline environments. Samples of photosynthetic microbial mats, both soft mats (salinities of 55–126?ppt) and gypsum-hosted endoevaporite mats (salinities of 77–320?ppt), were obtained from hypersaline environments in California, USA, Mexico and Chile. Methane production was determined from the increase in headspace methane concentration within incubation vials containing mat samples. At the end of the incubation period, the δ<sup>13</sup>C values of produced methane were measured. Soft microbial mat vials containing molybdate, a specific inhibitor of bacterial sulfate reduction, exhibited dramatically higher methane production rates and higher (enriched in <sup>13</sup>C) methane δ<sup>13</sup>C values than the controls. This suggests that the inhibition of sulfate reduction allowed the methanogens at these sites to use the competitive substrates (H<sub>2</sub> and/or acetate) made available. Further, the higher δ<sup>13</sup>C values of the produced methane suggest that substrates (both competitive and non-competitive) were used to near completion. At the endoevaporite sites, which have much higher salinities than the soft mat sites, methane production was not significantly different and the methane δ<sup>13</sup>C values either remained the same or decreased (depleted in <sup>13</sup>C) with added molybdate. We suggest that substrate availability increased enough to allow for somewhat greater isotopic fractionation resulting in the lower methane δ<sup>13</sup>C values that were observed, but not enough to significantly increase measured production rates. Where no changes in either methane production rates or δ<sup>13</sup>C values occurred, we hypothesize that salinity itself was inhibiting sulfate reduction and thus controlling microbe populations and rates of metabolism.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"25 5-6","pages":"237 - 251"},"PeriodicalIF":1.7000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-019-09362-x","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-019-09362-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3
Abstract
The aim of this research was to investigate the competition between methanogens and sulfate-reducing bacteria in hypersaline environments. Samples of photosynthetic microbial mats, both soft mats (salinities of 55–126?ppt) and gypsum-hosted endoevaporite mats (salinities of 77–320?ppt), were obtained from hypersaline environments in California, USA, Mexico and Chile. Methane production was determined from the increase in headspace methane concentration within incubation vials containing mat samples. At the end of the incubation period, the δ13C values of produced methane were measured. Soft microbial mat vials containing molybdate, a specific inhibitor of bacterial sulfate reduction, exhibited dramatically higher methane production rates and higher (enriched in 13C) methane δ13C values than the controls. This suggests that the inhibition of sulfate reduction allowed the methanogens at these sites to use the competitive substrates (H2 and/or acetate) made available. Further, the higher δ13C values of the produced methane suggest that substrates (both competitive and non-competitive) were used to near completion. At the endoevaporite sites, which have much higher salinities than the soft mat sites, methane production was not significantly different and the methane δ13C values either remained the same or decreased (depleted in 13C) with added molybdate. We suggest that substrate availability increased enough to allow for somewhat greater isotopic fractionation resulting in the lower methane δ13C values that were observed, but not enough to significantly increase measured production rates. Where no changes in either methane production rates or δ13C values occurred, we hypothesize that salinity itself was inhibiting sulfate reduction and thus controlling microbe populations and rates of metabolism.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.