{"title":"The ankyrin-binding domain of CD44s is involved in regulating hyaluronic acid-mediated functions and prostate tumor cell transformation.","authors":"D. Zhu, L. Bourguignon","doi":"10.1002/(SICI)1097-0169(1998)39:3<209::AID-CM4>3.0.CO;2","DOIUrl":null,"url":null,"abstract":"CD44 isoforms, such as CD44s (the standard form), contain at least one ankyrin-binding site within the 70-amino acid (aa) cytoplasmic domain and several hyaluronic acid (HA)-binding sites within the extracellular domain. To study the role of CD44s-ankyrin interaction in regulating human prostate tumor cells, we have constructed several CD44s cytoplasmic deletion mutants that lack the ankyrin-binding site(s). These truncated cDNAs were stably transfected into CD44-negative human prostate tumor cells (LNCaP). Our results indicate that a critical region of 15-amino acids (aa) between aa 304 and aa 318 of CD44s is required for ankyrin binding. Biochemical analyses, using competition binding assays with a synthetic peptide containing the 15 aa between aa 304 and aa 318 (NSGNGAVEDRKPSGL), further support the conclusion that this region contains the ankyrin-binding domain of CD44s. Deletion of this 15-aa ankyrin-binding sequence from CD44s results in a drastic reduction of HA-mediated binding/cell adhesion, Src p60 kinase(s) interaction and anchorage-independent growth in soft agar. These findings suggest that the binding of cytoskeletal proteins, such as ankyrin, to the cytoplasmic domain of CD44s plays a pivotal role in regulating HA-mediated functions as well as Src kinase activity and prostate tumor cell transformation.","PeriodicalId":9675,"journal":{"name":"Cell motility and the cytoskeleton","volume":"22 12","pages":"209-22"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell motility and the cytoskeleton","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1097-0169(1998)39:3<209::AID-CM4>3.0.CO;2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
CD44 isoforms, such as CD44s (the standard form), contain at least one ankyrin-binding site within the 70-amino acid (aa) cytoplasmic domain and several hyaluronic acid (HA)-binding sites within the extracellular domain. To study the role of CD44s-ankyrin interaction in regulating human prostate tumor cells, we have constructed several CD44s cytoplasmic deletion mutants that lack the ankyrin-binding site(s). These truncated cDNAs were stably transfected into CD44-negative human prostate tumor cells (LNCaP). Our results indicate that a critical region of 15-amino acids (aa) between aa 304 and aa 318 of CD44s is required for ankyrin binding. Biochemical analyses, using competition binding assays with a synthetic peptide containing the 15 aa between aa 304 and aa 318 (NSGNGAVEDRKPSGL), further support the conclusion that this region contains the ankyrin-binding domain of CD44s. Deletion of this 15-aa ankyrin-binding sequence from CD44s results in a drastic reduction of HA-mediated binding/cell adhesion, Src p60 kinase(s) interaction and anchorage-independent growth in soft agar. These findings suggest that the binding of cytoskeletal proteins, such as ankyrin, to the cytoplasmic domain of CD44s plays a pivotal role in regulating HA-mediated functions as well as Src kinase activity and prostate tumor cell transformation.