{"title":"Pharmaceutical intervention of advanced glycation endproducts.","authors":"A. Cerami, P. Ulrich","doi":"10.1002/0470868694.CH16","DOIUrl":null,"url":null,"abstract":"Recent studies have revealed that reducing sugars, such as glucose, react with proteins through non-enzymatic glycosylation to form irreversible, covalently cross-linked proteins known as advanced glycation endproducts (AGEs). Furthermore, it has been demonstrated that this naturally occurring process, accelerated in diabetics due to hyperglycaemia, impairs biological functions leading to cardiovascular disorders, as well as diabetic and age-related complications. Pharmaceutical intervention to prevent or reverse these complications have focused on inhibiting the formation of AGEs by compounds such as dimethyl-3-phenacylthiazolium chloride or breaking the glucose derived cross-links by selective cleavage. Intervention targeted at AGE cross-links in vivo offers a way to interfere with age-related changes of tissues.","PeriodicalId":19323,"journal":{"name":"Novartis Foundation Symposium","volume":"19 11","pages":"202-12; discussion 212-6, 217-20"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/0470868694.CH16","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Novartis Foundation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/0470868694.CH16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Recent studies have revealed that reducing sugars, such as glucose, react with proteins through non-enzymatic glycosylation to form irreversible, covalently cross-linked proteins known as advanced glycation endproducts (AGEs). Furthermore, it has been demonstrated that this naturally occurring process, accelerated in diabetics due to hyperglycaemia, impairs biological functions leading to cardiovascular disorders, as well as diabetic and age-related complications. Pharmaceutical intervention to prevent or reverse these complications have focused on inhibiting the formation of AGEs by compounds such as dimethyl-3-phenacylthiazolium chloride or breaking the glucose derived cross-links by selective cleavage. Intervention targeted at AGE cross-links in vivo offers a way to interfere with age-related changes of tissues.