{"title":"Double-layered TiO2 cavity/nanoparticle photoelectrodes for efficient dye-sensitized solar cells","authors":"Zhen Li, Libo Yu","doi":"10.1007/s11706-023-0638-8","DOIUrl":null,"url":null,"abstract":"<div><p>TiO<sub>2</sub> nanoparticles (NPs) in the size of ∼25 nm, namely P25, are very common material as the electron collecting layer in dye-sensitized solar cells (DSSCs). However, the light-scattering improvement of TiO<sub>2</sub> NP photoelectrodes is still a challenge. Here, we built TiO<sub>2</sub> cavities on the top of the TiO<sub>2</sub> NP layer by using carbonaceous microspheres as the template, forming the TiO<sub>2</sub> cavity/nanoparticle (C/NP) photoelectrode for the application in DSSCs. The cavity amount in the TiO<sub>2</sub> C/NP photoelectrode was controlled by adjusting the weight ratio of carbonaceous microspheres. SEM results confirm the successful formation of the double-layered TiO<sub>2</sub> C/NP electrode. <i>J—V</i> tests show that the optimized TiO<sub>2</sub> C/NP electrode prepared with 25 wt.% carbonaceous microspheres contributes to remarkable improvement of the short-circuit current density (<i>J</i><sub>sc</sub>) and the power conversion efficiency (PCE). The best photovoltaic performance solar cell with the PCE of 9.08% is achieved with the optimized TiO<sub>2</sub> C/NP photoelectrode, which is over 98% higher than that of the TiO<sub>2</sub> NP photoelectrode. Further investigations of UV-vis DRS, IPCE, OCVD, and EIS demonstrate that the competition between light scattering effect and charges recombination in this TiO<sub>2</sub> C/NP photoelectrode is responsible for the PCE enhancement.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0638-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
TiO2 nanoparticles (NPs) in the size of ∼25 nm, namely P25, are very common material as the electron collecting layer in dye-sensitized solar cells (DSSCs). However, the light-scattering improvement of TiO2 NP photoelectrodes is still a challenge. Here, we built TiO2 cavities on the top of the TiO2 NP layer by using carbonaceous microspheres as the template, forming the TiO2 cavity/nanoparticle (C/NP) photoelectrode for the application in DSSCs. The cavity amount in the TiO2 C/NP photoelectrode was controlled by adjusting the weight ratio of carbonaceous microspheres. SEM results confirm the successful formation of the double-layered TiO2 C/NP electrode. J—V tests show that the optimized TiO2 C/NP electrode prepared with 25 wt.% carbonaceous microspheres contributes to remarkable improvement of the short-circuit current density (Jsc) and the power conversion efficiency (PCE). The best photovoltaic performance solar cell with the PCE of 9.08% is achieved with the optimized TiO2 C/NP photoelectrode, which is over 98% higher than that of the TiO2 NP photoelectrode. Further investigations of UV-vis DRS, IPCE, OCVD, and EIS demonstrate that the competition between light scattering effect and charges recombination in this TiO2 C/NP photoelectrode is responsible for the PCE enhancement.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.