Fluorescence In Situ Hybridization to Maize (Zea mays) Chromosomes

Q1 Agricultural and Biological Sciences Current protocols in plant biology Pub Date : 2016-09-01 DOI:10.1002/cppb.20033
Morgan McCaw, Nathaniel Graham, Jon Cody, Nathan Swyers, Changzeng Zhao, James Birchler
{"title":"Fluorescence In Situ Hybridization to Maize (Zea mays) Chromosomes","authors":"Morgan McCaw,&nbsp;Nathaniel Graham,&nbsp;Jon Cody,&nbsp;Nathan Swyers,&nbsp;Changzeng Zhao,&nbsp;James Birchler","doi":"10.1002/cppb.20033","DOIUrl":null,"url":null,"abstract":"<p>Fluorescence In Situ Hybridization (FISH) is the annealing of fluorescent DNA probes to their complementary sequences on prepared chromosomes and subsequent visualization with a fluorescent microscope. In maize, FISH is useful for distinguishing each of the ten chromosomes in different accessions (karyotyping), roughly mapping single genes, transposable elements, transgene insertions, and identifying various chromosomal alterations. FISH can also be used to distinguish chromosomes between different Zea species in interspecific hybrids by use of retroelement painting. © 2016 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":10932,"journal":{"name":"Current protocols in plant biology","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cppb.20033","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in plant biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cppb.20033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3

Abstract

Fluorescence In Situ Hybridization (FISH) is the annealing of fluorescent DNA probes to their complementary sequences on prepared chromosomes and subsequent visualization with a fluorescent microscope. In maize, FISH is useful for distinguishing each of the ten chromosomes in different accessions (karyotyping), roughly mapping single genes, transposable elements, transgene insertions, and identifying various chromosomal alterations. FISH can also be used to distinguish chromosomes between different Zea species in interspecific hybrids by use of retroelement painting. © 2016 by John Wiley & Sons, Inc.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玉米染色体荧光原位杂交研究
荧光原位杂交(FISH)是将荧光DNA探针退火到其在制备的染色体上的互补序列,然后在荧光显微镜下显示。在玉米中,FISH可用于区分不同材料中的10条染色体中的每一条(核型),大致定位单个基因,转座元件,转基因插入以及识别各种染色体改变。FISH还可以通过逆转录因子染色来区分种间杂交玉米的染色体。©2016 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current protocols in plant biology
Current protocols in plant biology Agricultural and Biological Sciences-Plant Science
自引率
0.00%
发文量
0
期刊介绍: Sound and reproducible laboratory methods are the foundation of scientific discovery. Yet nuances that are critical for an experiment''s success are not captured in the primary literature but exist only as part of a lab''s oral tradition. Current Protocols in Plant Biology provides reproducible step-by-step instructions for protocols relevant to plant research. Furthermore, Current Protocols content is thoughtfully organized by topic for optimal usage and to maximize contextual knowledge. Quarterly issues allow Current Protocols in Plant Biology to constantly evolve to keep pace with the newest discoveries and developments. Current Protocols in Plant Biology is the comprehensive source for protocols in the multidisciplinary field of plant biology, providing an extensive range of protocols from basic to cutting edge. Coverage includes: Extraction and analysis of DNA, RNA, proteins Chromosome analysis Transcriptional analysis Protein expression Metabolites Plant enzymology Epigenetics Plant genetic transformation Mutagenesis Arabidopsis, Maize, Poplar, Rice, and Soybean, and more.
期刊最新文献
Issue Information Isolation, Library Preparation, and Bioinformatic Analysis of Historical and Ancient Plant DNA Isolation of Plant Root Nuclei for Single Cell RNA Sequencing Selective Enrichment Coupled with Proteomics to Identify S-Acylated Plasma Membrane Proteins in Arabidopsis In-Plate Quantitative Characterization of Arabidopsis thaliana Susceptibility to the Fungal Vascular Pathogen Fusarium oxysporum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1