Comparison of three AUC techniques for the determination of the loading status and capsid titer of AAVs

IF 2.2 4区 生物学 Q3 BIOPHYSICS European Biophysics Journal Pub Date : 2023-05-28 DOI:10.1007/s00249-023-01661-0
Alexander Bepperling, Janine Best
{"title":"Comparison of three AUC techniques for the determination of the loading status and capsid titer of AAVs","authors":"Alexander Bepperling,&nbsp;Janine Best","doi":"10.1007/s00249-023-01661-0","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the rise of adeno-associated viruses (AAVs) as gene therapy delivery vectors, boundary sedimentation velocity analytical ultracentrifugation (boundary SV-AUC) has been developed into a widely used quality control assay even for release analytics. It can be considered as the “gold standard” for the determination of the loading status of empty, partially filled, and full capsids especially when conducted in multiwavelength (MWL) mode. It can be considered to provide the most accurate determination of the loading status, and it also provides information on the capsid titer, aggregates, and potential contaminants such as free DNA. MWL boundary SV-AUC can be regarded as a multi-attribute (MAM) method for the characterization of AAVs. One major drawback of the method is the high sample consumption both in terms of concentration and volume. Here, we compare two alternative AUC techniques, band SV-AUC and analytical CsCl density gradient sedimentation equilibrium AUC (CsCl SE-AUC) with the boundary SV-AUC and the MWL-SV-AUC experiment. Our data show a high consistency of the determined full/empty ratios between these techniques if the appropriate wavelengths and extinction coefficients are used.\n</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01661-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Due to the rise of adeno-associated viruses (AAVs) as gene therapy delivery vectors, boundary sedimentation velocity analytical ultracentrifugation (boundary SV-AUC) has been developed into a widely used quality control assay even for release analytics. It can be considered as the “gold standard” for the determination of the loading status of empty, partially filled, and full capsids especially when conducted in multiwavelength (MWL) mode. It can be considered to provide the most accurate determination of the loading status, and it also provides information on the capsid titer, aggregates, and potential contaminants such as free DNA. MWL boundary SV-AUC can be regarded as a multi-attribute (MAM) method for the characterization of AAVs. One major drawback of the method is the high sample consumption both in terms of concentration and volume. Here, we compare two alternative AUC techniques, band SV-AUC and analytical CsCl density gradient sedimentation equilibrium AUC (CsCl SE-AUC) with the boundary SV-AUC and the MWL-SV-AUC experiment. Our data show a high consistency of the determined full/empty ratios between these techniques if the appropriate wavelengths and extinction coefficients are used.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三种AUC技术测定aav的负载状态和衣壳滴度的比较
由于腺相关病毒(aav)作为基因治疗传递载体的兴起,边界沉降速度分析超离心(边界SV-AUC)已经发展成为一种广泛使用的质量控制方法,甚至可以用于释放分析。它可以被认为是确定空、部分填充和满衣壳加载状态的“金标准”,特别是在多波长(MWL)模式下。它可以被认为提供了最准确的负载状态测定,它还提供了衣壳滴度、聚集物和潜在污染物(如游离DNA)的信息。MWL边界SV-AUC可以看作是一种多属性(MAM)表征aav的方法。该方法的一个主要缺点是在浓度和体积方面的高样品消耗。在这里,我们比较了两种可供选择的AUC技术,波段SV-AUC和分析CsCl密度梯度沉降平衡AUC (CsCl SE-AUC),以及边界SV-AUC和MWL-SV-AUC实验。我们的数据表明,如果使用适当的波长和消光系数,这些技术之间确定的满/空比具有高度一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
期刊最新文献
Time-dependent simulation of blood flow through an abdominal aorta with iliac arteries. Extreme enthalpy‒entropy compensation in the dimerization of small solutes in aqueous solution. Application of artificial neural network for the mechano-bactericidal effect of bioinspired nanopatterned surfaces. Structural investigation, computational analysis, and theoretical cryoprotectant approach of antifreeze protein type IV mutants. Computational study on the impact of linkage sequence on the structure and dynamics of lignin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1