Computational analysis of synergism in small networks with different logic

IF 1.8 4区 生物学 Q3 BIOPHYSICS Journal of Biological Physics Pub Date : 2022-12-29 DOI:10.1007/s10867-022-09620-0
Menghan Chen, Ruiqi Wang
{"title":"Computational analysis of synergism in small networks with different logic","authors":"Menghan Chen,&nbsp;Ruiqi Wang","doi":"10.1007/s10867-022-09620-0","DOIUrl":null,"url":null,"abstract":"<div><p>Cell fate decision processes are regulated by networks which contain different molecules and interactions. Different network topologies may exhibit synergistic or antagonistic effects on cellular functions. Here, we analyze six most common small networks with regulatory logic AND or OR, trying to clarify the relationship between network topologies and synergism (or antagonism) related to cell fate decisions. We systematically examine the contribution of both network topologies and regulatory logic to the cell fate synergism by bifurcation and combinatorial perturbation analysis. Initially, under a single set of parameters, the synergism of three types of networks with AND and OR logic is compared. Furthermore, to consider whether these results depend on the choices of parameter values, statistics on the synergism of five hundred parameter sets is performed. It is shown that the results are not sensitive to parameter variations, indicating that the synergy or antagonism mainly depends on the network topologies rather than the choices of parameter values. The results indicate that the topology with “Dual Inhibition” shows good synergism, while the topology with “Dual Promotion” or “Hybrid” shows antagonism. The results presented here may help us to design synergistic networks based on network structure and regulation combinations, which has promising implications for cell fate decisions and drug combinations.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-022-09620-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-022-09620-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cell fate decision processes are regulated by networks which contain different molecules and interactions. Different network topologies may exhibit synergistic or antagonistic effects on cellular functions. Here, we analyze six most common small networks with regulatory logic AND or OR, trying to clarify the relationship between network topologies and synergism (or antagonism) related to cell fate decisions. We systematically examine the contribution of both network topologies and regulatory logic to the cell fate synergism by bifurcation and combinatorial perturbation analysis. Initially, under a single set of parameters, the synergism of three types of networks with AND and OR logic is compared. Furthermore, to consider whether these results depend on the choices of parameter values, statistics on the synergism of five hundred parameter sets is performed. It is shown that the results are not sensitive to parameter variations, indicating that the synergy or antagonism mainly depends on the network topologies rather than the choices of parameter values. The results indicate that the topology with “Dual Inhibition” shows good synergism, while the topology with “Dual Promotion” or “Hybrid” shows antagonism. The results presented here may help us to design synergistic networks based on network structure and regulation combinations, which has promising implications for cell fate decisions and drug combinations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同逻辑下小网络协同效应的计算分析
细胞命运的决定过程是由包含不同分子和相互作用的网络调控的。不同的网络拓扑结构可能对细胞功能表现出协同或拮抗作用。在这里,我们分析了六个最常见的具有与或调控逻辑的小网络,试图澄清网络拓扑结构与与细胞命运决定相关的协同(或拮抗)之间的关系。我们通过分岔和组合摄动分析系统地研究了网络拓扑结构和调控逻辑对细胞命运协同作用的贡献。首先,在一组参数下,比较了三种具有与或逻辑的网络的协同作用。此外,为了考虑这些结果是否取决于参数值的选择,对500个参数集的协同作用进行了统计。结果表明,网络的协同或对抗主要取决于网络的拓扑结构,而不是参数值的选择。结果表明,“双抑制”拓扑具有较好的协同作用,而“双促进”或“混合”拓扑具有拮抗作用。本文提出的结果可能有助于我们设计基于网络结构和调控组合的协同网络,这对细胞命运决定和药物组合具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
期刊最新文献
Pseudo-trajectory inference for identifying essential regulations and molecules in cell fate decisions Stochastic model of seed dispersal with homogeneous and non-homogeneous Poisson processes under habitat reduction conditions Exploring the effects of simulated microgravity on esophageal cancer cells: insights into morphological, growth behavior, adhesion, and genetic damage A possible origin of the inverted vertebrate retina revealed by physical modeling Motor domain of condensin and step formation in extruding loop of DNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1