Macro to nano specimen measurements using photons and electrons with digital holographic interferometry: a review

IF 1.9 4区 物理与天体物理 Q3 OPTICS Journal of the European Optical Society-Rapid Publications Pub Date : 2020-06-29 DOI:10.1186/s41476-020-00133-8
María del Socorro Hernández-Montes, Fernando Mendoza-Santoyo, Mauricio Flores Moreno, Manuel de la Torre-Ibarra, Luis Silva Acosta, Natalith Palacios-Ortega
{"title":"Macro to nano specimen measurements using photons and electrons with digital holographic interferometry: a review","authors":"María del Socorro Hernández-Montes,&nbsp;Fernando Mendoza-Santoyo,&nbsp;Mauricio Flores Moreno,&nbsp;Manuel de la Torre-Ibarra,&nbsp;Luis Silva Acosta,&nbsp;Natalith Palacios-Ortega","doi":"10.1186/s41476-020-00133-8","DOIUrl":null,"url":null,"abstract":"<p>Today digital holographic interferometry (DHI) is considered a modern full-field non-destructive technique that allows generating 3D quantitative data of a wide variety of specimens. There are diverse optical setups for DHI that enable the study of specimens in static and dynamic conditions: it is a viable alternative to characterize a wide diversity of parameters in the micro and macro world by conducting repeatable, reliable and accurate measurements that render specimen data, e.g., displacements, shape, spatial dimensions, physiological conditions, refractive indices, and vibration responses. This paper presents a review and progress on the most significant topics, contributions and applications involving DHI for the study of different specimens such as: cells, bio tissues, grains, insects, and nano-structures. For most of the research work involving macro and micro specimens the wave-like source used in the measurements were photons from a laser, while the studies carried out in the nano regime used the wave-like nature of the electron.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-020-00133-8","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-020-00133-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 6

Abstract

Today digital holographic interferometry (DHI) is considered a modern full-field non-destructive technique that allows generating 3D quantitative data of a wide variety of specimens. There are diverse optical setups for DHI that enable the study of specimens in static and dynamic conditions: it is a viable alternative to characterize a wide diversity of parameters in the micro and macro world by conducting repeatable, reliable and accurate measurements that render specimen data, e.g., displacements, shape, spatial dimensions, physiological conditions, refractive indices, and vibration responses. This paper presents a review and progress on the most significant topics, contributions and applications involving DHI for the study of different specimens such as: cells, bio tissues, grains, insects, and nano-structures. For most of the research work involving macro and micro specimens the wave-like source used in the measurements were photons from a laser, while the studies carried out in the nano regime used the wave-like nature of the electron.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光子和电子进行宏观到纳米尺度的数字全息干涉测量:综述
今天,数字全息干涉测量(DHI)被认为是一种现代的全场非破坏性技术,可以生成各种标本的3D定量数据。有多种用于DHI的光学装置,可以在静态和动态条件下研究标本:通过进行可重复、可靠和准确的测量来呈现标本数据,例如位移、形状、空间尺寸、生理条件、折射率和振动响应,这是表征微观和宏观世界中各种参数的可行替代方法。本文综述了DHI在细胞、生物组织、谷物、昆虫和纳米结构等不同标本研究中的重要课题、贡献和应用。对于大多数涉及宏观和微观样本的研究工作,测量中使用的波状源是来自激光的光子,而在纳米体系中进行的研究使用了电子的波状性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
期刊最新文献
Detection of zinc in pig feed based on the cavities of different shapes combined with LIBS The Symmetric and Antisymmetric Phase Modulation for the Joint Spectral Amplitude of the Biphotons in SPDC Spectral reflectance fitting based on land-based hyperspectral imaging and semi-empirical kernel-driven model for typical camouflage materials Quantum coherence and entanglement of the system of a five−level atom in the presence of nonlinear fields Implementation of FORMIDABLE: a generalized differential optical design library with NURBS capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1