María del Socorro Hernández-Montes, Fernando Mendoza-Santoyo, Mauricio Flores Moreno, Manuel de la Torre-Ibarra, Luis Silva Acosta, Natalith Palacios-Ortega
{"title":"Macro to nano specimen measurements using photons and electrons with digital holographic interferometry: a review","authors":"María del Socorro Hernández-Montes, Fernando Mendoza-Santoyo, Mauricio Flores Moreno, Manuel de la Torre-Ibarra, Luis Silva Acosta, Natalith Palacios-Ortega","doi":"10.1186/s41476-020-00133-8","DOIUrl":null,"url":null,"abstract":"<p>Today digital holographic interferometry (DHI) is considered a modern full-field non-destructive technique that allows generating 3D quantitative data of a wide variety of specimens. There are diverse optical setups for DHI that enable the study of specimens in static and dynamic conditions: it is a viable alternative to characterize a wide diversity of parameters in the micro and macro world by conducting repeatable, reliable and accurate measurements that render specimen data, e.g., displacements, shape, spatial dimensions, physiological conditions, refractive indices, and vibration responses. This paper presents a review and progress on the most significant topics, contributions and applications involving DHI for the study of different specimens such as: cells, bio tissues, grains, insects, and nano-structures. For most of the research work involving macro and micro specimens the wave-like source used in the measurements were photons from a laser, while the studies carried out in the nano regime used the wave-like nature of the electron.</p>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s41476-020-00133-8","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-020-00133-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 6
Abstract
Today digital holographic interferometry (DHI) is considered a modern full-field non-destructive technique that allows generating 3D quantitative data of a wide variety of specimens. There are diverse optical setups for DHI that enable the study of specimens in static and dynamic conditions: it is a viable alternative to characterize a wide diversity of parameters in the micro and macro world by conducting repeatable, reliable and accurate measurements that render specimen data, e.g., displacements, shape, spatial dimensions, physiological conditions, refractive indices, and vibration responses. This paper presents a review and progress on the most significant topics, contributions and applications involving DHI for the study of different specimens such as: cells, bio tissues, grains, insects, and nano-structures. For most of the research work involving macro and micro specimens the wave-like source used in the measurements were photons from a laser, while the studies carried out in the nano regime used the wave-like nature of the electron.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.