Kinetics of Thiocyanate Formation by Reaction of Cyanide with Tetrathionate

IF 1.7 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Aquatic Geochemistry Pub Date : 2020-06-29 DOI:10.1007/s10498-020-09385-9
Irina Kurashova, Alexey Kamyshny Jr.
{"title":"Kinetics of Thiocyanate Formation by Reaction of Cyanide with Tetrathionate","authors":"Irina Kurashova,&nbsp;Alexey Kamyshny Jr.","doi":"10.1007/s10498-020-09385-9","DOIUrl":null,"url":null,"abstract":"<p>In aquatic systems a reaction between tetrathionate and cyanide results in the formation of thiocyanate. We have studied kinetics of the reactions of tetrathionate with free cyanide and two cyanide complexes, hexacyanoferrate(II) and hexacyanoferrate(III), at the environmentally relevant conditions. For the reaction between tetrathionate and free cyanide, the rate constant and the activation energy, but not the reaction order, strongly depend on pH. Our observations allow to propose the following pathways of thiocyanate formation by the reactions of free cyanide with tetrathionate: (1) tetrathionate reacts relatively slow with hydrogen cyanide at acidic and neutral conditions; and (2) tetrathionate reacts relatively fast with cyanide anion under highly alkaline conditions. Depending on environmental conditions, the half-lives of the reaction between free cyanide and tetrathionate will be in the ranges of hours to several years. Reactions of tetrathionate with hexacyanoferrate(II) and hexacyanoferrate(III) have no environmental significance as they are slower than the decomposition of tetrathionate. Strategy for improvement of analytical protocols for analysis of tetrathionate and cyanide is proposed based on the detected kinetics parameters.</p>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"27 1","pages":"63 - 77"},"PeriodicalIF":1.7000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10498-020-09385-9","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-020-09385-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

In aquatic systems a reaction between tetrathionate and cyanide results in the formation of thiocyanate. We have studied kinetics of the reactions of tetrathionate with free cyanide and two cyanide complexes, hexacyanoferrate(II) and hexacyanoferrate(III), at the environmentally relevant conditions. For the reaction between tetrathionate and free cyanide, the rate constant and the activation energy, but not the reaction order, strongly depend on pH. Our observations allow to propose the following pathways of thiocyanate formation by the reactions of free cyanide with tetrathionate: (1) tetrathionate reacts relatively slow with hydrogen cyanide at acidic and neutral conditions; and (2) tetrathionate reacts relatively fast with cyanide anion under highly alkaline conditions. Depending on environmental conditions, the half-lives of the reaction between free cyanide and tetrathionate will be in the ranges of hours to several years. Reactions of tetrathionate with hexacyanoferrate(II) and hexacyanoferrate(III) have no environmental significance as they are slower than the decomposition of tetrathionate. Strategy for improvement of analytical protocols for analysis of tetrathionate and cyanide is proposed based on the detected kinetics parameters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氰化物与四硫酸盐反应生成硫氰酸盐的动力学
在水生系统中,四硫酸盐和氰化物之间的反应产生硫氰酸盐。研究了四硫酸盐与游离氰化物以及六氰高铁酸盐(II)和六氰高铁酸盐(III)两种氰化物配合物在环境相关条件下的反应动力学。对于四硫酸盐与游离氰化物的反应,其反应速率常数和活化能与ph值有很大关系,而反应顺序与ph值无关。我们的观察结果表明,游离氰化物与四硫酸盐反应生成硫氰酸盐的途径如下:(1)在酸性和中性条件下,四硫酸盐与氰化氢反应相对缓慢;(2)四硫酸盐在高碱性条件下与氰化物阴离子反应较快。根据环境条件的不同,游离氰化物与四硫酸盐反应的半衰期从几小时到几年不等。四硫酸盐与六氰高铁酸盐(II)和六氰高铁酸盐(III)的反应没有环境意义,因为它们比四硫酸盐的分解慢。根据检测到的动力学参数,提出了改进四硫酸盐和氰化物分析方案的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Geochemistry
Aquatic Geochemistry 地学-地球化学与地球物理
CiteScore
4.30
自引率
0.00%
发文量
6
审稿时长
1 months
期刊介绍: We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.
期刊最新文献
Quantification of Post-monsoon CO2 Degassing Flux from the Headwaters of the Ganga River: Emphasis on Weathering Pattern of the Basin Preface to the Special Issue on "The Hydrochemistry and Isotope Geochemistry of Alkaline Lakes and Brine Systems": A Tribute to Paolo Censi Origin and Formation Mechanisms of Potassium- and Lithium-Rich Brines in the Triassic Strata of Northeastern Sichuan Basin, South China Geochemical Behaviour and Influencing Factors of Salt-Forming Elements in Lithium-Rich Salt Lake Region: A Case Study from the Nalenggele River Basin, Qaidam Basin Mechanisms Underlying the Bromine Anomaly in the Brine of the Jingbian Gas Field, Ordos Basin, Northwestern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1