Towards the Optimization of a Parallel Streaming Engine for Telco Applications

Q1 Engineering Bell Labs Technical Journal Pub Date : 2014-02-26 DOI:10.1002/bltj.21652
Bart Theeten, Ivan Bedini, Peter Cogan, Alessandra Sala, Tommaso Cucinotta
{"title":"Towards the Optimization of a Parallel Streaming Engine for Telco Applications","authors":"Bart Theeten,&nbsp;Ivan Bedini,&nbsp;Peter Cogan,&nbsp;Alessandra Sala,&nbsp;Tommaso Cucinotta","doi":"10.1002/bltj.21652","DOIUrl":null,"url":null,"abstract":"<p>Parallel and distributed computing is becoming essential to process in real time the increasingly massive volume of data collected by telecommunications companies. Existing computational paradigms such as MapReduce (and its popular open-source implementation Hadoop) provide a scalable, fault tolerant mechanism for large scale batch computations. However, many applications in the telco ecosystem require a real time, incremental streaming approach to process data in real time and enable proactive care. Storm is a scalable, fault tolerant framework for the analysis of real time streaming data. In this paper we provide a motivation for the use of real time streaming analytics in the telco ecosystem. We perform an experimental investigation into the performance of Storm, focusing in particular on the impact of parameter configuration. This investigation reveals that optimal parameter choice is highly non-trivial and we use this as motivation to create a parameter configuration engine. As first steps towards the creation of this engine we provide a deep analysis of the inner workings of Storm and provide a set of models describing data flow cost, central processing unit (CPU) cost, and system management cost. © 2014 Alcatel-Lucent.</p>","PeriodicalId":55592,"journal":{"name":"Bell Labs Technical Journal","volume":"18 4","pages":"181-197"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bltj.21652","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bell Labs Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bltj.21652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 14

Abstract

Parallel and distributed computing is becoming essential to process in real time the increasingly massive volume of data collected by telecommunications companies. Existing computational paradigms such as MapReduce (and its popular open-source implementation Hadoop) provide a scalable, fault tolerant mechanism for large scale batch computations. However, many applications in the telco ecosystem require a real time, incremental streaming approach to process data in real time and enable proactive care. Storm is a scalable, fault tolerant framework for the analysis of real time streaming data. In this paper we provide a motivation for the use of real time streaming analytics in the telco ecosystem. We perform an experimental investigation into the performance of Storm, focusing in particular on the impact of parameter configuration. This investigation reveals that optimal parameter choice is highly non-trivial and we use this as motivation to create a parameter configuration engine. As first steps towards the creation of this engine we provide a deep analysis of the inner workings of Storm and provide a set of models describing data flow cost, central processing unit (CPU) cost, and system management cost. © 2014 Alcatel-Lucent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向电信应用的并行流引擎的优化
并行和分布式计算对于实时处理电信公司收集的日益庞大的数据量变得至关重要。现有的计算范式,如MapReduce(及其流行的开源实现Hadoop)为大规模批处理计算提供了可伸缩的容错机制。然而,电信生态系统中的许多应用都需要一种实时、增量流的方法来实时处理数据,并实现主动护理。Storm是一个可扩展的、容错的框架,用于分析实时流数据。在本文中,我们提供了在电信生态系统中使用实时流分析的动机。我们对Storm的性能进行了实验研究,特别关注参数配置的影响。该研究揭示了最优参数选择的高度非平凡性,并以此为动力创建了参数配置引擎。作为创建该引擎的第一步,我们对Storm的内部工作进行了深入分析,并提供了一组描述数据流成本、中央处理单元(CPU)成本和系统管理成本的模型。©2014阿尔卡特朗讯
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bell Labs Technical Journal
Bell Labs Technical Journal 工程技术-电信学
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The Bell Labs Technical Journal (BLTJ) highlights key research and development activities across Alcatel-Lucent — within Bell Labs, within the company’s CTO organizations, and in cross-functional projects and initiatives. It publishes papers and letters by Alcatel-Lucent researchers, scientists, and engineers and co-authors affiliated with universities, government and corporate research labs, and customer companies. Its aim is to promote progress in communications fields worldwide; Bell Labs innovations enable Alcatel-Lucent to deliver leading products, solutions, and services that meet customers’ mission critical needs.
期刊最新文献
Copyright page The future of Augmented Intelligence Future edge clouds The network OS: Carrier-grade SDN control of multi-domain, multi-layer networks Development of Optimal Tour Time Model for Tourist Destinations in A City: Application in Pokhara City Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1