Bending and Buckling Responses of FGM Nanoplates Embedded in an Elastic Medium

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Physical Mesomechanics Pub Date : 2023-06-30 DOI:10.1134/S1029959923030062
R. Bentabet, A. Attia, M. M. Selim, A. Chikh, F. Bourada, A. A. Bousahla, M. H. Ghazwani, A. Tounsi
{"title":"Bending and Buckling Responses of FGM Nanoplates Embedded in an Elastic Medium","authors":"R. Bentabet,&nbsp;A. Attia,&nbsp;M. M. Selim,&nbsp;A. Chikh,&nbsp;F. Bourada,&nbsp;A. A. Bousahla,&nbsp;M. H. Ghazwani,&nbsp;A. Tounsi","doi":"10.1134/S1029959923030062","DOIUrl":null,"url":null,"abstract":"<p>This research is devoted to the study of the flexural response and buckling analysis (thermal and mechanical) of functionally graded (FG) nanoscale plates integrated in an elastic medium. The structure is modeled on the basis of a refined integral plate theory with four unknowns incorporated into Eringen’s nonlocal elasticity theory. The material properties of the plate are considered to be graded continuously over the entire thickness of the nanoplate. The elastic medium is simulated like Pasternak’s two-parameter elastic foundations. The equilibrium equations are determined from the principle of virtual displacements. The results for simply supported FG nanoscale plates are deduced and compared with those available in the literature. Parametric studies are carried out to demonstrate the impacts of the inhomogeneity parameter, nonlocal parameter, elastic medium stiffness, and plate geometric ratios on the behavior of FG nanoscale plates.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959923030062","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

This research is devoted to the study of the flexural response and buckling analysis (thermal and mechanical) of functionally graded (FG) nanoscale plates integrated in an elastic medium. The structure is modeled on the basis of a refined integral plate theory with four unknowns incorporated into Eringen’s nonlocal elasticity theory. The material properties of the plate are considered to be graded continuously over the entire thickness of the nanoplate. The elastic medium is simulated like Pasternak’s two-parameter elastic foundations. The equilibrium equations are determined from the principle of virtual displacements. The results for simply supported FG nanoscale plates are deduced and compared with those available in the literature. Parametric studies are carried out to demonstrate the impacts of the inhomogeneity parameter, nonlocal parameter, elastic medium stiffness, and plate geometric ratios on the behavior of FG nanoscale plates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FGM纳米板在弹性介质中的弯曲和屈曲响应
本研究致力于研究功能梯度(FG)纳米级板在弹性介质中的弯曲响应和屈曲分析(热力学)。该结构的建模是基于改进的积分板理论,并将四个未知数纳入了Eringen的非局部弹性理论。在纳米板的整个厚度上,材料性能被认为是连续分级的。采用帕斯捷尔纳克双参数弹性地基模拟弹性介质。平衡方程由虚位移原理确定。推导了简支FG纳米板的结果,并与文献中已有的结果进行了比较。通过参数化研究证明了非均匀性参数、非局部参数、弹性介质刚度和板的几何比例对FG纳米板性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
期刊最新文献
Different-Scale Heterogeneities in Segments of Active Faults and Their Influence on Slip Modes Identification of the Spallation Properties and Ultimate Spall Strength of Heterogeneous Materials in Dynamic Processes Experimental and Theoretical Study of Space Debris Impacts on Shielded Targets Theoretical Study of Vortex-Like Atomic Structures within a Continuum Framework Effect of Structural-Phase State on the Deformation Behavior and Mechanical Properties of Near β Titanium Alloy VT22 in the Temperature Range 293–823 K
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1