A new approach to avoid excessive numerical diffusion in Eulerian–Lagrangian methods

A. Younes, M. Fahs, P. Ackerer
{"title":"A new approach to avoid excessive numerical diffusion in Eulerian–Lagrangian methods","authors":"A. Younes, M. Fahs, P. Ackerer","doi":"10.1002/CNM.996","DOIUrl":null,"url":null,"abstract":"Lumping is often used to avoid non-physical oscillations for advection–dispersion equations but is known to add numerical diffusion. A new approach is detailed in order to avoid excessive numerical diffusion in Eulerian–Lagrangian methods when several time steps are used. The basic idea of this approach is to keep the same characteristics during all time steps and to interpolate only the concentration variations due to the dispersion process. In this way, numerical diffusion due to the lumping is removed at the end of each time step. The method is combined with the Eulerian–Lagrangian localized adjoint method (ELLAM) which is a mass conservative characteristic method for solving the advection–dispersion equation. \n \n \n \nTwo test problems are modelled to compare the proposed method to the consistent, the full and the selective lumping approaches for linear and non-linear transport equations. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"897-910"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.996","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Lumping is often used to avoid non-physical oscillations for advection–dispersion equations but is known to add numerical diffusion. A new approach is detailed in order to avoid excessive numerical diffusion in Eulerian–Lagrangian methods when several time steps are used. The basic idea of this approach is to keep the same characteristics during all time steps and to interpolate only the concentration variations due to the dispersion process. In this way, numerical diffusion due to the lumping is removed at the end of each time step. The method is combined with the Eulerian–Lagrangian localized adjoint method (ELLAM) which is a mass conservative characteristic method for solving the advection–dispersion equation. Two test problems are modelled to compare the proposed method to the consistent, the full and the selective lumping approaches for linear and non-linear transport equations. Copyright © 2007 John Wiley & Sons, Ltd.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欧拉-拉格朗日方法中避免过多数值扩散的新方法
集总通常用于避免平流-色散方程的非物理振荡,但已知会增加数值扩散。为了避免欧拉-拉格朗日方法在使用多个时间步长的情况下产生过多的数值扩散,提出了一种新的方法。这种方法的基本思想是在所有时间步长中保持相同的特性,并且只插值由于分散过程引起的浓度变化。通过这种方法,在每个时间步长结束时消除了由于集总引起的数值扩散。该方法与求解平流色散方程的质量保守特征方法欧拉-拉格朗日局部伴随法(ELLAM)相结合。通过模拟两个测试问题,将该方法与线性和非线性输运方程的一致集总、完全集总和选择性集总方法进行了比较。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An innovative prone positioning system for advanced deformity and frailty in complex spine surgery. Optimization of anastomotic configuration in CABG surgery Comparative study between two numerical methods for oxygen diffusion problem Optimal stress recovery points for higher-order bar elements by Prathap's best-fit method A stabilized smoothed finite element method for free vibration analysis of Mindlin–Reissner plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1