{"title":"Transhydrogenation of pentane with 1,5- and 2,4-hexadiene over CrOx/Al2O3","authors":"Mustapha D. Garba, S. David Jackson","doi":"10.1007/s13203-020-00259-3","DOIUrl":null,"url":null,"abstract":"<p>Transhydrogenation of pentane (P) and 1,5-hexadiene (1,5HD) and pentane and 2,4-hexadiene (2,4HD) was studied over a CrO<sub><i>x</i></sub>/alumina catalyst at 523–773?K. Thermodynamic stability differences between the conjugated (2,4-hexadiene) and non-conjugated (1,5-hexadiene) isomers indicated that transhydrogenation was favoured between pentane and 1,5-hexadiene but not pentane and 2,4-hexadiene (+?ve ?G). At 773?K a significantly enhanced alkene yield was observed for the P/1,5HD system, clearly showing the effect of transhydrogenation. The yield of alkenes was?~?50% and included alkylated and isomerized alkenes. Alkylation and isomerization were significant reactions under reaction conditions. Pentane was shown to affect the chemistry of 1,5HD and vice versa with the conversion of pentane significantly enhanced at all reaction temperatures, indicating a molecular interaction between the reactants even when transhydrogenation was not obvious. In contrast, no effect on the conversion of pentane was observed when the co-feed was 2,4HD. An unexpected effect of pentane on 2,4HD conversion was observed, with all reactions of <i>cis</i>-2,4-hexadiene (including alkylation and isomerization) being completely inhibited at low reaction temperatures (573?K and 523?K) by the presence of pentane, suggesting that pentane competes for the same sites as <i>cis</i>-2,4-hexadiene. Transhydrogenation activity between pentane and 1,5-hexadiene was less obvious at the lower reaction temperature, which appeared to be a kinetic effect. Direct hydrogenation of 1,5-hexadiene revealed that 1,5HD sampled the same hydrogen population for hydrogenation and transhydrogenation. Comparisons of transhydrogenation of 1-hexyne, 1,5-hexadiene, and 2,4-hexadiene with pentane have revealed significant differences in the adsorption and reaction chemistry of the three isomers.\n</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 1","pages":"79 - 88"},"PeriodicalIF":0.1250,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-020-00259-3","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-020-00259-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Transhydrogenation of pentane (P) and 1,5-hexadiene (1,5HD) and pentane and 2,4-hexadiene (2,4HD) was studied over a CrOx/alumina catalyst at 523–773?K. Thermodynamic stability differences between the conjugated (2,4-hexadiene) and non-conjugated (1,5-hexadiene) isomers indicated that transhydrogenation was favoured between pentane and 1,5-hexadiene but not pentane and 2,4-hexadiene (+?ve ?G). At 773?K a significantly enhanced alkene yield was observed for the P/1,5HD system, clearly showing the effect of transhydrogenation. The yield of alkenes was?~?50% and included alkylated and isomerized alkenes. Alkylation and isomerization were significant reactions under reaction conditions. Pentane was shown to affect the chemistry of 1,5HD and vice versa with the conversion of pentane significantly enhanced at all reaction temperatures, indicating a molecular interaction between the reactants even when transhydrogenation was not obvious. In contrast, no effect on the conversion of pentane was observed when the co-feed was 2,4HD. An unexpected effect of pentane on 2,4HD conversion was observed, with all reactions of cis-2,4-hexadiene (including alkylation and isomerization) being completely inhibited at low reaction temperatures (573?K and 523?K) by the presence of pentane, suggesting that pentane competes for the same sites as cis-2,4-hexadiene. Transhydrogenation activity between pentane and 1,5-hexadiene was less obvious at the lower reaction temperature, which appeared to be a kinetic effect. Direct hydrogenation of 1,5-hexadiene revealed that 1,5HD sampled the same hydrogen population for hydrogenation and transhydrogenation. Comparisons of transhydrogenation of 1-hexyne, 1,5-hexadiene, and 2,4-hexadiene with pentane have revealed significant differences in the adsorption and reaction chemistry of the three isomers.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.