Influence of the Cold Rolling Reduction Ratio and the Final Annealing Temperature on the Properties and Microstructure of Al–Mg–Sc Alloy Sheets

IF 0.6 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Russian Journal of Non-Ferrous Metals Pub Date : 2022-10-22 DOI:10.3103/S1067821222050042
F. V. Grechnikov, Ya. A. Erisov, S. V. Surudin, V. A. Razzhivin
{"title":"Influence of the Cold Rolling Reduction Ratio and the Final Annealing Temperature on the Properties and Microstructure of Al–Mg–Sc Alloy Sheets","authors":"F. V. Grechnikov,&nbsp;Ya. A. Erisov,&nbsp;S. V. Surudin,&nbsp;V. A. Razzhivin","doi":"10.3103/S1067821222050042","DOIUrl":null,"url":null,"abstract":"<p>The effect of the cold rolling reduction ratio (ε<sub><i>h</i></sub>) on the microstructure and the complex of mechanical and technological properties of cold-rolled sheets from aluminum alloy V-1579 of the Al–Mg–Sc system has been studied. The influence of the final annealing temperature of sheets rolled with different reduction ratios has been examined as well. The character of plastic anisotropy has been found to change slightly with an increase in ε<sub><i>h</i></sub> during cold rolling; an increase in tensile strength and yield strength with a decrease in relative elongation is observed. In this case, the anisotropy of the ultimate strength and yield strength is nearly absent. With an increase in the reduction ratio to 30–40%, the anisotropy of the relative elongation increases: the relative elongation in the rolling direction decreases more rapidly. However, after rolling with ε<sub><i>h</i></sub> &gt; 50%, the elongation anisotropy almost disappears. Regardless of the annealing temperature, samples rolled with a higher reduction ratio have higher strength characteristics. With an increase in the annealing temperature, the ultimate strength and yield strength decrease, while the relative elongation increases. In this case, softening with the annealing temperature occurs more intensely for samples rolled with a lower reduction. For all analyzed regimes, the character of the distribution of anisotropy indices in the sheet plane does not decrease after annealing and corresponds to the deformation type of textures. Moreover, the in-plane anisotropy coefficient decreases after annealing in comparison with a cold-rolled sample. At the same time, the technological properties of samples rolled with a higher degree of deformation are higher after annealing than those of samples rolled with a lower reduction regardless of the annealing temperature.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":"63 5","pages":"544 - 550"},"PeriodicalIF":0.6000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1067821222050042","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of the cold rolling reduction ratio (εh) on the microstructure and the complex of mechanical and technological properties of cold-rolled sheets from aluminum alloy V-1579 of the Al–Mg–Sc system has been studied. The influence of the final annealing temperature of sheets rolled with different reduction ratios has been examined as well. The character of plastic anisotropy has been found to change slightly with an increase in εh during cold rolling; an increase in tensile strength and yield strength with a decrease in relative elongation is observed. In this case, the anisotropy of the ultimate strength and yield strength is nearly absent. With an increase in the reduction ratio to 30–40%, the anisotropy of the relative elongation increases: the relative elongation in the rolling direction decreases more rapidly. However, after rolling with εh > 50%, the elongation anisotropy almost disappears. Regardless of the annealing temperature, samples rolled with a higher reduction ratio have higher strength characteristics. With an increase in the annealing temperature, the ultimate strength and yield strength decrease, while the relative elongation increases. In this case, softening with the annealing temperature occurs more intensely for samples rolled with a lower reduction. For all analyzed regimes, the character of the distribution of anisotropy indices in the sheet plane does not decrease after annealing and corresponds to the deformation type of textures. Moreover, the in-plane anisotropy coefficient decreases after annealing in comparison with a cold-rolled sample. At the same time, the technological properties of samples rolled with a higher degree of deformation are higher after annealing than those of samples rolled with a lower reduction regardless of the annealing temperature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷轧压下率和最终退火温度对Al-Mg-Sc合金板材性能和组织的影响
研究了冷轧压下率(εh)对Al-Mg-Sc系V-1579铝合金冷轧薄板显微组织及综合力学性能和工艺性能的影响。研究了不同压下率对轧制薄板最终退火温度的影响。在冷轧过程中,塑性各向异性的特征随εh的增大而略有变化;拉伸强度和屈服强度随相对伸长率的降低而增加。在这种情况下,极限强度和屈服强度的各向异性几乎不存在。当压下比增加到30 ~ 40%时,相对伸长率的各向异性增加,轧制方向的相对伸长率下降得更快。然而,在与εh >50%时,伸长率各向异性几乎消失。无论退火温度如何,压下率越高的轧制样品具有较高的强度特性。随着退火温度的升高,合金的极限强度和屈服强度降低,而相对伸长率升高。在这种情况下,随着退火温度的变化,对于压下率较低的轧制样品,软化发生得更强烈。各向异性指数的分布特征与织构的变形类型一致,退火后各向异性指数的分布特征没有减小。与冷轧样品相比,退火后的面内各向异性系数减小。同时,无论退火温度如何,变形程度较高的轧制样品的退火后的工艺性能都高于压下程度较低的轧制样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Non-Ferrous Metals
Russian Journal of Non-Ferrous Metals METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.90
自引率
12.50%
发文量
59
审稿时长
3 months
期刊介绍: Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.
期刊最新文献
SHS Compaction of TiC-Based Cermets Using Mechanically Activated Mixtures Exothermic Synthesis of Binary Solid Solutions Based on Hafnium and Zirconium Carbides Effect of Mechanical Activation and Combustion Parameters on SHS Compaction of Titanium Carbide Process Research and Mechanism Analysis of Pellet Roasting and Monazite Decomposition Preparation of Mo25ZrB2 Cermet by Hot Pressing Sintering and Its Static Oxidation Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1