{"title":"Line-intensity mapping: theory review with a focus on star-formation lines","authors":"José Luis Bernal, Ely D. Kovetz","doi":"10.1007/s00159-022-00143-0","DOIUrl":null,"url":null,"abstract":"<div><p>Line-intensity mapping (LIM) is an emerging approach to survey the Universe, using relatively low-aperture instruments to scan large portions of the sky and collect the total spectral-line emission from galaxies and the intergalactic medium. Mapping the intensity fluctuations of an array of lines offers a unique opportunity to probe redshifts well beyond the reach of other cosmological observations, access regimes that cannot be explored otherwise, and exploit the enormous potential of cross-correlations with other measurements. This promises to deepen our understanding of various questions related to galaxy formation and evolution, cosmology, and fundamental physics. Here, we focus on lines ranging from microwave to optical frequencies, the emission of which is related to star formation in galaxies across cosmic history. Over the next decade, LIM will transition from a pathfinder era of first detections to an early-science era where data from more than a dozen missions will be harvested to yield new insights and discoveries. This review discusses the primary target lines for these missions, describes the different approaches to modeling their intensities and fluctuations, surveys the scientific prospects of their measurement, presents the formalism behind the statistical methods to analyze the data, and motivates the opportunities for synergy with other observables. Our goal is to provide a pedagogical introduction to the field for non-experts, as well as to serve as a comprehensive reference for specialists.</p></div>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"30 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-022-00143-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Line-intensity mapping (LIM) is an emerging approach to survey the Universe, using relatively low-aperture instruments to scan large portions of the sky and collect the total spectral-line emission from galaxies and the intergalactic medium. Mapping the intensity fluctuations of an array of lines offers a unique opportunity to probe redshifts well beyond the reach of other cosmological observations, access regimes that cannot be explored otherwise, and exploit the enormous potential of cross-correlations with other measurements. This promises to deepen our understanding of various questions related to galaxy formation and evolution, cosmology, and fundamental physics. Here, we focus on lines ranging from microwave to optical frequencies, the emission of which is related to star formation in galaxies across cosmic history. Over the next decade, LIM will transition from a pathfinder era of first detections to an early-science era where data from more than a dozen missions will be harvested to yield new insights and discoveries. This review discusses the primary target lines for these missions, describes the different approaches to modeling their intensities and fluctuations, surveys the scientific prospects of their measurement, presents the formalism behind the statistical methods to analyze the data, and motivates the opportunities for synergy with other observables. Our goal is to provide a pedagogical introduction to the field for non-experts, as well as to serve as a comprehensive reference for specialists.
期刊介绍:
The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.