Georgina C. Laredo, Patricia Pérez-Romo, Ricardo Agueda-Rangel, Alfonso García-López
{"title":"Effect of the experimental conditions on BTX formation from hydrotreated light cycle oil","authors":"Georgina C. Laredo, Patricia Pérez-Romo, Ricardo Agueda-Rangel, Alfonso García-López","doi":"10.1007/s13203-020-00242-y","DOIUrl":null,"url":null,"abstract":"<p>The study of a light cycle oil (LCO) upgrading alternative involving hydrotreating and hydrocracking/transalkylation procedures for obtaining a benzene, toluene and xylene (BTX) enriched fraction is presented. The research work was focused on the effect of the experimental conditions on the hydrocracking of an hydrotreated light cycle oil (HDT LCO) in order to produce the highest amounts of BTX, when the catalysts consisted of a mixture (50/50 in weight) of nickel–molybdenum on alumina (NiMo/Al<sub>2</sub>O<sub>3</sub>) and ZSM-5 materials (NiMo/ZSM-5 (50)). It was found that 7.4?MPa, up to 375?°C, LHSV of 1.2?h<sup>?1</sup> and a H<sub>2</sub>/Oil value of 442 m<sup>3</sup>/m<sup>3</sup> were the optimal experimental conditions for producing an enriched BTX fraction (31%). In order to facilitate the analysis, the study was carried out considering four types of hydrocarbons as lumps for the feed and HCK products: light hydrocarbons (LHC) composed by C4–C7 non-aromatic compounds, BTX, middle hydrocarbons (MHC) consisting of C7–C10 paraffins and isoparaffins, alkylbenzenes, tetralin and naphthalene derivatives and a small amount of high molecular weight hydrocarbons (HHC). Based on this description, HDT LCO used as feedstock for the hydrocracking (HCK) procedure, presents a 99% of a MHC fraction. The HCK conversion, BTX selectivity and yields were obtained from the chromatographic analysis of the products. A simple kinetic model considering only the MHC conversion was carried out. The obtained activation energy confirmed the endothermic nature of the HCK process. The activity decay of the catalytic mixture was also studied by varying the time on stream.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"10 1","pages":"21 - 34"},"PeriodicalIF":0.1250,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-020-00242-y","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-020-00242-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The study of a light cycle oil (LCO) upgrading alternative involving hydrotreating and hydrocracking/transalkylation procedures for obtaining a benzene, toluene and xylene (BTX) enriched fraction is presented. The research work was focused on the effect of the experimental conditions on the hydrocracking of an hydrotreated light cycle oil (HDT LCO) in order to produce the highest amounts of BTX, when the catalysts consisted of a mixture (50/50 in weight) of nickel–molybdenum on alumina (NiMo/Al2O3) and ZSM-5 materials (NiMo/ZSM-5 (50)). It was found that 7.4?MPa, up to 375?°C, LHSV of 1.2?h?1 and a H2/Oil value of 442 m3/m3 were the optimal experimental conditions for producing an enriched BTX fraction (31%). In order to facilitate the analysis, the study was carried out considering four types of hydrocarbons as lumps for the feed and HCK products: light hydrocarbons (LHC) composed by C4–C7 non-aromatic compounds, BTX, middle hydrocarbons (MHC) consisting of C7–C10 paraffins and isoparaffins, alkylbenzenes, tetralin and naphthalene derivatives and a small amount of high molecular weight hydrocarbons (HHC). Based on this description, HDT LCO used as feedstock for the hydrocracking (HCK) procedure, presents a 99% of a MHC fraction. The HCK conversion, BTX selectivity and yields were obtained from the chromatographic analysis of the products. A simple kinetic model considering only the MHC conversion was carried out. The obtained activation energy confirmed the endothermic nature of the HCK process. The activity decay of the catalytic mixture was also studied by varying the time on stream.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.