{"title":"A model for the pressure drop in gas—liquid cocurrent downflow through packed beds","authors":"G.S.V. Ratnam, M.S. Ananth, Y.B.G. Varma","doi":"10.1016/0300-9467(93)80004-8","DOIUrl":null,"url":null,"abstract":"<div><p>A model for pressure drop is proposed for gas—liquid flow through packed beds on the basis of the observed absence of radial pressure gradients and taking into consideration the structure of the bed and the physical properties of the fluids. The model divides the total voitage of the bed into internal and external voidage and appropriately distributes the total liquid holdup into internal and external holdup.</p><p>Over 2500 experimental data, from the present study as well as those reported in literature, are correlated by the model with an r.m.s. deviation of less than ±9%. The significant parameters affecting the two-phase pressure drop are found to be the bed porosity, the Reynolds number, and the product of the Eötvos and the Morton numbers.</p></div>","PeriodicalId":101225,"journal":{"name":"The Chemical Engineering Journal","volume":"51 1","pages":"Pages 19-28"},"PeriodicalIF":0.0000,"publicationDate":"1993-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0300-9467(93)80004-8","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Chemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0300946793800048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
A model for pressure drop is proposed for gas—liquid flow through packed beds on the basis of the observed absence of radial pressure gradients and taking into consideration the structure of the bed and the physical properties of the fluids. The model divides the total voitage of the bed into internal and external voidage and appropriately distributes the total liquid holdup into internal and external holdup.
Over 2500 experimental data, from the present study as well as those reported in literature, are correlated by the model with an r.m.s. deviation of less than ±9%. The significant parameters affecting the two-phase pressure drop are found to be the bed porosity, the Reynolds number, and the product of the Eötvos and the Morton numbers.