G. Messina, R. Bosco, D. Amodeo, N. Nante, I. De Palma, C. Petri, G. Cevenini
{"title":"Safer school with near-UV technology: novel applications for environmental hygiene","authors":"G. Messina, R. Bosco, D. Amodeo, N. Nante, I. De Palma, C. Petri, G. Cevenini","doi":"10.1007/s40201-023-00850-5","DOIUrl":null,"url":null,"abstract":"<div><p>Systems capable of disinfecting air and surfaces could reduce the risk of infectious diseases transmission. Aim: to evaluate the effectiveness of near-UV LED ceiling lamps, with a wavelength of 405 nm, in improving environmental hygiene. Between November and December 2020, we conducted an experimental study having a pre-post design in a kindergarten room in Siena where 4 ceiling lamps with 405 nm LED technology were installed. Twice per day, sampling was performed before (T0) and after treatment with near-UV (T1). We used between 8 and 12 pairs of contact plates to sample at various random spots each day. Air samplings were also performed. The plates were incubated at 22 and 36 °C. Significance was set at 95% (p < 0.05). The mean level of Colony Forming Unit (CFU) at T(0) was 249 (95% CI 193.1 – 305.0) at 36 °C and 535.2 (374.3 – 696.1) at 22 °C. The reduction was significant at T(1): by 65% at 36 °C and, 72% at 22 °C. Also, for air contamination: 95.3% (98.4—92.3). A dose threshold of about 5 J/cm<sup>2</sup> was identified to have an 80% CFU abatement and remains nearly constant. The advantage of being able to use this technology in the presence of people is very important in the context of controlling environmental contamination.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"157 - 165"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-023-00850-5.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-023-00850-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
Systems capable of disinfecting air and surfaces could reduce the risk of infectious diseases transmission. Aim: to evaluate the effectiveness of near-UV LED ceiling lamps, with a wavelength of 405 nm, in improving environmental hygiene. Between November and December 2020, we conducted an experimental study having a pre-post design in a kindergarten room in Siena where 4 ceiling lamps with 405 nm LED technology were installed. Twice per day, sampling was performed before (T0) and after treatment with near-UV (T1). We used between 8 and 12 pairs of contact plates to sample at various random spots each day. Air samplings were also performed. The plates were incubated at 22 and 36 °C. Significance was set at 95% (p < 0.05). The mean level of Colony Forming Unit (CFU) at T(0) was 249 (95% CI 193.1 – 305.0) at 36 °C and 535.2 (374.3 – 696.1) at 22 °C. The reduction was significant at T(1): by 65% at 36 °C and, 72% at 22 °C. Also, for air contamination: 95.3% (98.4—92.3). A dose threshold of about 5 J/cm2 was identified to have an 80% CFU abatement and remains nearly constant. The advantage of being able to use this technology in the presence of people is very important in the context of controlling environmental contamination.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene