Christian Zanza, Francesco Saglietti, Manfredi Tesauro, Yaroslava Longhitano, Gabriele Savioli, Mario Giosuè Balzanelli, Tatsiana Romenskaya, Luigi Cofone, Ivano Pindinello, Giulia Racca, Fabrizio Racca
{"title":"Cardiogenic Pulmonary Edema in Emergency Medicine.","authors":"Christian Zanza, Francesco Saglietti, Manfredi Tesauro, Yaroslava Longhitano, Gabriele Savioli, Mario Giosuè Balzanelli, Tatsiana Romenskaya, Luigi Cofone, Ivano Pindinello, Giulia Racca, Fabrizio Racca","doi":"10.3390/arm91050034","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiogenic pulmonary edema (CPE) is characterized by the development of acute respiratory failure associated with the accumulation of fluid in the lung's alveolar spaces due to an elevated cardiac filling pressure. All cardiac diseases, characterized by an increasing pressure in the left side of the heart, can cause CPE. High capillary pressure for an extended period can also cause barrier disruption, which implies increased permeability and fluid transfer into the alveoli, leading to edema and atelectasis. The breakdown of the alveolar-epithelial barrier is a consequence of multiple factors that include dysregulated inflammation, intense leukocyte infiltration, activation of procoagulant processes, cell death, and mechanical stretch. Reactive oxygen and nitrogen species (RONS) can modify or damage ion channels, such as epithelial sodium channels, which alters fluid balance. Some studies claim that these patients may have higher levels of surfactant protein B in the bloodstream. The correct approach to patients with CPE should include a detailed medical history and a physical examination to evaluate signs and symptoms of CPE as well as potential causes. Second-level diagnostic tests, such as pulmonary ultrasound, natriuretic peptide level, chest radiograph, and echocardiogram, should occur in the meantime. The identification of the specific CPE phenotype is essential to set the most appropriate therapy for these patients. Non-invasive ventilation (NIV) should be considered early in the treatment of this disease. Diuretics and vasodilators are used for pulmonary congestion. Hypoperfusion requires treatment with inotropes and occasionally vasopressors. Patients with persistent symptoms and diuretic resistance might benefit from additional approaches (i.e., beta-agonists and pentoxifylline). This paper reviews the pathophysiology, clinical presentation, and management of CPE.</p>","PeriodicalId":7391,"journal":{"name":"Advances in respiratory medicine","volume":"91 5","pages":"445-463"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10604083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in respiratory medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/arm91050034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiogenic pulmonary edema (CPE) is characterized by the development of acute respiratory failure associated with the accumulation of fluid in the lung's alveolar spaces due to an elevated cardiac filling pressure. All cardiac diseases, characterized by an increasing pressure in the left side of the heart, can cause CPE. High capillary pressure for an extended period can also cause barrier disruption, which implies increased permeability and fluid transfer into the alveoli, leading to edema and atelectasis. The breakdown of the alveolar-epithelial barrier is a consequence of multiple factors that include dysregulated inflammation, intense leukocyte infiltration, activation of procoagulant processes, cell death, and mechanical stretch. Reactive oxygen and nitrogen species (RONS) can modify or damage ion channels, such as epithelial sodium channels, which alters fluid balance. Some studies claim that these patients may have higher levels of surfactant protein B in the bloodstream. The correct approach to patients with CPE should include a detailed medical history and a physical examination to evaluate signs and symptoms of CPE as well as potential causes. Second-level diagnostic tests, such as pulmonary ultrasound, natriuretic peptide level, chest radiograph, and echocardiogram, should occur in the meantime. The identification of the specific CPE phenotype is essential to set the most appropriate therapy for these patients. Non-invasive ventilation (NIV) should be considered early in the treatment of this disease. Diuretics and vasodilators are used for pulmonary congestion. Hypoperfusion requires treatment with inotropes and occasionally vasopressors. Patients with persistent symptoms and diuretic resistance might benefit from additional approaches (i.e., beta-agonists and pentoxifylline). This paper reviews the pathophysiology, clinical presentation, and management of CPE.
期刊介绍:
"Advances in Respiratory Medicine" is a new international title for "Pneumonologia i Alergologia Polska", edited bimonthly and addressed to respiratory professionals. The Journal contains peer-reviewed original research papers, short communications, case-reports, recommendations of the Polish Respiratory Society concerning the diagnosis and treatment of lung diseases, editorials, postgraduate education articles, letters and book reviews in the field of pneumonology, allergology, oncology, immunology and infectious diseases. "Advances in Respiratory Medicine" is an open access, official journal of Polish Society of Lung Diseases, Polish Society of Allergology and National Research Institute of Tuberculosis and Lung Diseases.