VariantSurvival: a tool to identify genotype-treatment response.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in bioinformatics Pub Date : 2023-10-11 eCollection Date: 2023-01-01 DOI:10.3389/fbinf.2023.1277923
Thomas Krannich, Marina Herrera Sarrias, Hiba Ben Aribi, Moustafa Shokrof, Alfredo Iacoangeli, Ammar Al-Chalabi, Fritz J Sedlazeck, Ben Busby, Ahmad Al Khleifat
{"title":"VariantSurvival: a tool to identify genotype-treatment response.","authors":"Thomas Krannich, Marina Herrera Sarrias, Hiba Ben Aribi, Moustafa Shokrof, Alfredo Iacoangeli, Ammar Al-Chalabi, Fritz J Sedlazeck, Ben Busby, Ahmad Al Khleifat","doi":"10.3389/fbinf.2023.1277923","DOIUrl":null,"url":null,"abstract":"<p><p><b>Motivation:</b> For a number of neurological diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and many others, certain genes are known to be involved in the disease mechanism. A common question is whether a structural variant in any such gene may be related to drug response in clinical trials and how this relationship can contribute to the lifecycle of drug development. <b>Results:</b> To this end, we introduce VariantSurvival, a tool that identifies changes in survival relative to structural variants within target genes. VariantSurvival matches annotated structural variants with genes that are clinically relevant to neurological diseases. A Cox regression model determines the change in survival between the placebo and clinical trial groups with respect to the number of structural variants in the drug target genes. We demonstrate the functionality of our approach with the exemplary case of the <i>SETX</i> gene. VariantSurvival has a user-friendly and lightweight graphical user interface built on the shiny web application package.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"3 ","pages":"1277923"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2023.1277923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: For a number of neurological diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and many others, certain genes are known to be involved in the disease mechanism. A common question is whether a structural variant in any such gene may be related to drug response in clinical trials and how this relationship can contribute to the lifecycle of drug development. Results: To this end, we introduce VariantSurvival, a tool that identifies changes in survival relative to structural variants within target genes. VariantSurvival matches annotated structural variants with genes that are clinically relevant to neurological diseases. A Cox regression model determines the change in survival between the placebo and clinical trial groups with respect to the number of structural variants in the drug target genes. We demonstrate the functionality of our approach with the exemplary case of the SETX gene. VariantSurvival has a user-friendly and lightweight graphical user interface built on the shiny web application package.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VariantSurvival:一种识别基因型治疗反应的工具。
动机:对于许多神经系统疾病,如阿尔茨海默病、肌萎缩侧索硬化症和许多其他疾病,已知某些基因与疾病机制有关。一个常见的问题是,任何此类基因的结构变异是否与临床试验中的药物反应有关,以及这种关系如何有助于药物开发的生命周期。结果:为此,我们引入了VariantSurvival,这是一种识别存活率相对于靶基因结构变异变化的工具。VariantSurvival将注释的结构变体与临床上与神经疾病相关的基因进行匹配。Cox回归模型确定了安慰剂组和临床试验组之间相对于药物靶基因结构变异数量的生存率变化。我们用SETX基因的例子来证明我们的方法的功能。VariantSurvival在闪亮的web应用程序包上构建了一个用户友好、轻量级的图形用户界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊最新文献
Quantification of muscle fiber malformations using edge detection to investigate chronic muscle pressure ulcers. Computational identification and characterization of chitinase 1 and chitinase 2 from neotropical isolates of Beauveria bassiana. DCMA: faster protein backbone dihedral angle prediction using a dilated convolutional attention-based neural network. Identification of novel drug targets for Helicobacter pylori: structure-based virtual screening of potential inhibitors against DAH7PS protein involved in the shikimate pathway. Editorial: Women in bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1