Cheryl F. Lichti , Norelle C. Wildburger , Alexander S. Shavkunov , Ekaterina Mostovenko , Huiling Liu , Erik P. Sulman , Carol L. Nilsson
{"title":"The proteomic landscape of glioma stem-like cells","authors":"Cheryl F. Lichti , Norelle C. Wildburger , Alexander S. Shavkunov , Ekaterina Mostovenko , Huiling Liu , Erik P. Sulman , Carol L. Nilsson","doi":"10.1016/j.euprot.2015.06.008","DOIUrl":null,"url":null,"abstract":"<div><p>Glioma stem-like cells (GSCs) are hypothesized to provide a repository of cells in tumors that can self-replicate and are radio- and chemo-resistant. GSC lines, representing several glioma subtypes, have been isolated and characterized at the transcript level. We sought to characterize 35 GSC lines at the protein level using label-free quantitative proteomics. Resulting relative fold changes were used to drive unsupervised hierarchical clustering for the purpose of classifying the cell lines based on proteomic profiles. Bioinformatics analysis identified synoviolin, serine/arginine-rich splicing factor 2, symplekin, and IL-5 as molecules of interest in progression and/or treatment of glioma.</p></div>","PeriodicalId":38260,"journal":{"name":"EuPA Open Proteomics","volume":"8 ","pages":"Pages 85-93"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.euprot.2015.06.008","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuPA Open Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212968515300088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 9
Abstract
Glioma stem-like cells (GSCs) are hypothesized to provide a repository of cells in tumors that can self-replicate and are radio- and chemo-resistant. GSC lines, representing several glioma subtypes, have been isolated and characterized at the transcript level. We sought to characterize 35 GSC lines at the protein level using label-free quantitative proteomics. Resulting relative fold changes were used to drive unsupervised hierarchical clustering for the purpose of classifying the cell lines based on proteomic profiles. Bioinformatics analysis identified synoviolin, serine/arginine-rich splicing factor 2, symplekin, and IL-5 as molecules of interest in progression and/or treatment of glioma.