Estimating the variability of contact parameter temperature dependence with the Monte Carlo Markov Chain method

GeoResJ Pub Date : 2014-09-01 DOI:10.1016/j.grj.2014.09.002
A. Määttänen , M. Douspis
{"title":"Estimating the variability of contact parameter temperature dependence with the Monte Carlo Markov Chain method","authors":"A. Määttänen ,&nbsp;M. Douspis","doi":"10.1016/j.grj.2014.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Recent datasets on heterogeneous deposition mode ice nucleation have revealed a strong dependence of the contact parameter <em>m</em> on temperature, ranging from linear to exponential, depending on the experiments. We analyze recent datasets using a Monte Carlo Markov Chain method with the full classical nucleation theory including spherical and planar geometry. The method we use allows us to test models of the temperature dependence of the contact parameter and evaluate their performance. We estimate the applicability of different forms of contact parameter temperature dependence, including a new well-behaved suggestion. Such a function has a more physical behavior at high and low temperatures and might thus be more easily applicable in atmospheric modeling. However, because of their limited temperature range, the present datasets are unable to reveal the behavior of the contact parameter in low temperatures, and we are unable to fully validate the proposed function. We thus call for more heterogeneous nucleation experiments reaching low temperatures (&lt;170<!--> <!-->K). Such datasets may be significant for studies on, for example, polar mesospheric clouds, Mars ice clouds, and perhaps exoplanet clouds. This work provides a new framework, valid even for very small ice nucleus sizes, for analyzing heterogeneous nucleation datasets.</p></div>","PeriodicalId":93099,"journal":{"name":"GeoResJ","volume":"3 ","pages":"Pages 46-55"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.grj.2014.09.002","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeoResJ","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214242814000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Recent datasets on heterogeneous deposition mode ice nucleation have revealed a strong dependence of the contact parameter m on temperature, ranging from linear to exponential, depending on the experiments. We analyze recent datasets using a Monte Carlo Markov Chain method with the full classical nucleation theory including spherical and planar geometry. The method we use allows us to test models of the temperature dependence of the contact parameter and evaluate their performance. We estimate the applicability of different forms of contact parameter temperature dependence, including a new well-behaved suggestion. Such a function has a more physical behavior at high and low temperatures and might thus be more easily applicable in atmospheric modeling. However, because of their limited temperature range, the present datasets are unable to reveal the behavior of the contact parameter in low temperatures, and we are unable to fully validate the proposed function. We thus call for more heterogeneous nucleation experiments reaching low temperatures (<170 K). Such datasets may be significant for studies on, for example, polar mesospheric clouds, Mars ice clouds, and perhaps exoplanet clouds. This work provides a new framework, valid even for very small ice nucleus sizes, for analyzing heterogeneous nucleation datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用蒙特卡罗马尔可夫链法估计接触参数温度依赖的变异性
最近关于非均质沉积模式冰成核的数据集揭示了接触参数m对温度的强烈依赖,根据实验的不同,其范围从线性到指数。本文采用蒙特卡罗马尔可夫链方法,结合完整的经典成核理论,包括球面几何和平面几何,对最近的数据集进行了分析。我们使用的方法允许我们测试接触参数的温度依赖模型并评估其性能。我们估计了不同形式的接触参数温度依赖的适用性,包括一个新的良好的建议。这种函数在高温和低温下具有更强的物理性质,因此可能更容易适用于大气模拟。然而,由于其有限的温度范围,目前的数据集无法揭示接触参数在低温下的行为,我们无法完全验证所提出的函数。因此,我们需要在低温(170 K)下进行更多的非均质成核实验。这样的数据集可能对极地中间层云、火星冰云以及可能的系外行星云的研究具有重要意义。这项工作为分析非均质核数据集提供了一个新的框架,即使对于非常小的冰核尺寸也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Soil legacy data rescue via GlobalSoilMap and other international and national initiatives Design and development of a generic spatial decision support system, based on artificial intelligence and multicriteria decision analysis A re-evaluation of the basal age in the DSDP hole at Site 534, Central Atlantic The application of machine learning for evaluating anthropogenic versus natural climate change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1