{"title":"Swelling of clay minerals in unconsolidated porous media and its impact on permeability","authors":"I. Aksu , E. Bazilevskaya , Z.T. Karpyn","doi":"10.1016/j.grj.2015.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>This work combines core-flood experiments with X-ray μ-computed tomography (μ-CT) to investigate the swelling of clay minerals and its impact on permeability of unconsolidated porous media. Both swelling (montmorillonite) and non-swelling (kaolinite) clay were added as coatings on soda lime beads and quartz grains. Clay content varied from 1.4 to 5.5<!--> <!-->wt.% in the montmorillonite-coated samples and from 2.0 to 6.8<!--> <!-->wt.% in the kaolinite-coated samples. Permeability changes were monitored as a function of time using pure water. Visualization of coated bead and grains columns by μ-CT provided quantitative information on morphological changes of clay grains/coatings among dry and water-saturated samples. All clay-coated samples showed a 10–40% decrease in permeability as compared to uncoated samples. In general, permeability decreases with increasing clay content. A 39% volume increase of montmorillonite particles was observed by μ-CT immediately after the sample was saturated with water, i.e. swelling occurred almost instantaneously after water–clay contact. In contrast, kaolinite particles had a 15% volume increase, which was primarily attributed to the hydration of clay pellets by water. The calculated porosity reduction associated with clay swelling ranged from 0.4% to 1.7% including both montmorillonite- and kaolinite-coated samples. This decrease in porosity was estimated to cause only a 2–5% reduction in permeability, primarily due to the high initial porosity and permeability of the selected samples. This study presents a baseline to estimate changes in permeability as a result of clay swelling for samples with variable clay content, grain size, and porosity.</p></div>","PeriodicalId":93099,"journal":{"name":"GeoResJ","volume":"7 ","pages":"Pages 1-13"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.grj.2015.02.003","citationCount":"128","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeoResJ","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221424281500011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 128
Abstract
This work combines core-flood experiments with X-ray μ-computed tomography (μ-CT) to investigate the swelling of clay minerals and its impact on permeability of unconsolidated porous media. Both swelling (montmorillonite) and non-swelling (kaolinite) clay were added as coatings on soda lime beads and quartz grains. Clay content varied from 1.4 to 5.5 wt.% in the montmorillonite-coated samples and from 2.0 to 6.8 wt.% in the kaolinite-coated samples. Permeability changes were monitored as a function of time using pure water. Visualization of coated bead and grains columns by μ-CT provided quantitative information on morphological changes of clay grains/coatings among dry and water-saturated samples. All clay-coated samples showed a 10–40% decrease in permeability as compared to uncoated samples. In general, permeability decreases with increasing clay content. A 39% volume increase of montmorillonite particles was observed by μ-CT immediately after the sample was saturated with water, i.e. swelling occurred almost instantaneously after water–clay contact. In contrast, kaolinite particles had a 15% volume increase, which was primarily attributed to the hydration of clay pellets by water. The calculated porosity reduction associated with clay swelling ranged from 0.4% to 1.7% including both montmorillonite- and kaolinite-coated samples. This decrease in porosity was estimated to cause only a 2–5% reduction in permeability, primarily due to the high initial porosity and permeability of the selected samples. This study presents a baseline to estimate changes in permeability as a result of clay swelling for samples with variable clay content, grain size, and porosity.