{"title":"Insight into craton evolution: Constraints from shear wave splitting in the North China Craton","authors":"Liang Zhao, Tianyu Zheng, Gang Lü","doi":"10.1016/j.pepi.2008.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>The multi-episodic tectonic activities from the Precambrian to Cenozoic, including nucleus formation, cratonic amalgamation, and rejuvenation, make the North China Craton (NCC) an ideal natural laboratory for studying craton evolution. Spatial change in the upper deformation records is an important aspect for understanding cratonic formation and rejuvenation. In this study, we performed seismic shear wave splitting analysis using SKS phases from 50 portable stations. Two different methodologies, shear wave splitting measurement and amplitude analysis of transverse/radial components, produced mutually consistent splitting results. These results showed that the seismic anisotropy beneath the Ordos Block can be divided into three subgroups reflecting the tectonic control. Combining these results with those from previous splitting studies in the eastern NCC, we suggest that the Proterozoic amalgamation generated the seismic anisotropy in the boundary zone between the Ordos Block and the Trans-North China Orogen, while the anisotropy in the eastern Trans-North China Orogen and eastern NCC were possibly associated with the lithospheric rejuvenation during the Late Mesozoic to Cenozoic.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"168 3","pages":"Pages 153-162"},"PeriodicalIF":2.4000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pepi.2008.06.003","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920108001222","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 36
Abstract
The multi-episodic tectonic activities from the Precambrian to Cenozoic, including nucleus formation, cratonic amalgamation, and rejuvenation, make the North China Craton (NCC) an ideal natural laboratory for studying craton evolution. Spatial change in the upper deformation records is an important aspect for understanding cratonic formation and rejuvenation. In this study, we performed seismic shear wave splitting analysis using SKS phases from 50 portable stations. Two different methodologies, shear wave splitting measurement and amplitude analysis of transverse/radial components, produced mutually consistent splitting results. These results showed that the seismic anisotropy beneath the Ordos Block can be divided into three subgroups reflecting the tectonic control. Combining these results with those from previous splitting studies in the eastern NCC, we suggest that the Proterozoic amalgamation generated the seismic anisotropy in the boundary zone between the Ordos Block and the Trans-North China Orogen, while the anisotropy in the eastern Trans-North China Orogen and eastern NCC were possibly associated with the lithospheric rejuvenation during the Late Mesozoic to Cenozoic.
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.