A. Sievers , H.M. Behrens , T.J. Buckhout , D. Gradmann
{"title":"Can a Ca2+ Pump in the Endoplasmic Reticulum of the Lepidium Root be the Trigger for Rapid Changes in Membrane Potential after Gravistimulation?","authors":"A. Sievers , H.M. Behrens , T.J. Buckhout , D. Gradmann","doi":"10.1016/S0044-328X(84)80010-0","DOIUrl":null,"url":null,"abstract":"<div><p>Since gravistimulation is followed by alterations in the external current symmetry (Behrens et al., 1982), the effect of gravistimulation on cellular membrane potential was investigated using conventional glass microelectrode techniques. The resting potential of statocytes in a vertically oriented root is approx. -118 mV. Upon gravistimulation, the membrane potential is temporarily depolarized (lag time = 2 s) to a potential of approx. -93 mV. This depolarization is only observed in statocytes located on the physically lower root flank while those on the corresponding upper flank become weakly hyperpolarized (approx. -13 mV). These results reflect altered ion fluxes across the plasma membrane.</p><p>The perception of gravistimulus was suggested to result from a pressure of the amyloplasts on the distal endoplasmic reticulum (ER) of the statocytes (Sievers and Volkmann, 1972).</p><p>A causal relationship between changes in ER-amyloplast interactions and the rapid alterations in plasma membrane potential described above is not known. A candidate for such an intracellular messenger is Ca<sup>2+</sup>. As a first step in establishing the validity of such an assumption, we have isolated ER membranes from roots. When incubated with micromolar concentrations of Ca<sup>2+</sup>, the vesicular membrane fraction accumulates Ca<sup>2+</sup>. The accumulation is ATP-dependent and -specific and is directly coupled to ATP hydrolysis since a protonophore shows no inhibitory effect. Thus, in analogy to the sarcoplasmic reticulum of muscle, regulation of an ER-localized Ca<sup>2+</sup> compartment might be an important step in such complex processes as stimulus-transduction in gravitropism.</p></div>","PeriodicalId":23797,"journal":{"name":"Zeitschrift für Pflanzenphysiologie","volume":"114 3","pages":"Pages 195-200"},"PeriodicalIF":0.0000,"publicationDate":"1984-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0044-328X(84)80010-0","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Pflanzenphysiologie","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0044328X84800100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
Since gravistimulation is followed by alterations in the external current symmetry (Behrens et al., 1982), the effect of gravistimulation on cellular membrane potential was investigated using conventional glass microelectrode techniques. The resting potential of statocytes in a vertically oriented root is approx. -118 mV. Upon gravistimulation, the membrane potential is temporarily depolarized (lag time = 2 s) to a potential of approx. -93 mV. This depolarization is only observed in statocytes located on the physically lower root flank while those on the corresponding upper flank become weakly hyperpolarized (approx. -13 mV). These results reflect altered ion fluxes across the plasma membrane.
The perception of gravistimulus was suggested to result from a pressure of the amyloplasts on the distal endoplasmic reticulum (ER) of the statocytes (Sievers and Volkmann, 1972).
A causal relationship between changes in ER-amyloplast interactions and the rapid alterations in plasma membrane potential described above is not known. A candidate for such an intracellular messenger is Ca2+. As a first step in establishing the validity of such an assumption, we have isolated ER membranes from roots. When incubated with micromolar concentrations of Ca2+, the vesicular membrane fraction accumulates Ca2+. The accumulation is ATP-dependent and -specific and is directly coupled to ATP hydrolysis since a protonophore shows no inhibitory effect. Thus, in analogy to the sarcoplasmic reticulum of muscle, regulation of an ER-localized Ca2+ compartment might be an important step in such complex processes as stimulus-transduction in gravitropism.