{"title":"Rayleigh–Benard convection in a micropolar ferromagnetic fluid","authors":"Annamma Abraham","doi":"10.1016/S0020-7225(01)00046-5","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of Rayleigh–Benard convection in a micropolar ferromagnetic fluid layer permeated by a uniform, vertical magnetic field is investigated analytically with free–free, isothermal<span>, spin-vanishing, magnetic boundaries. The influence of the various micropolar and magnetization parameters on the onset of stationary convection has been analysed. It is observed that the micropolar ferromagnetic fluid layer heated from below is more stable as compared with the classical Newtonian ferromagnetic fluid. The nature of influence of the magnetization parameters on convection in the micropolar ferromagnetic fluid is similar to that in the case of Newtonian ferromagnetic fluids. The influence of the micropolar parameters on convection in the ferromagnetic case is akin to its role in the non-magnetic fluid case. The critical wave number is found to be insensitive to the changes in the micropolar fluid parameters, but sensitive to the magnetization parameters.</span></p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"40 4","pages":"Pages 449-460"},"PeriodicalIF":5.7000,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0020-7225(01)00046-5","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722501000465","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 53
Abstract
The problem of Rayleigh–Benard convection in a micropolar ferromagnetic fluid layer permeated by a uniform, vertical magnetic field is investigated analytically with free–free, isothermal, spin-vanishing, magnetic boundaries. The influence of the various micropolar and magnetization parameters on the onset of stationary convection has been analysed. It is observed that the micropolar ferromagnetic fluid layer heated from below is more stable as compared with the classical Newtonian ferromagnetic fluid. The nature of influence of the magnetization parameters on convection in the micropolar ferromagnetic fluid is similar to that in the case of Newtonian ferromagnetic fluids. The influence of the micropolar parameters on convection in the ferromagnetic case is akin to its role in the non-magnetic fluid case. The critical wave number is found to be insensitive to the changes in the micropolar fluid parameters, but sensitive to the magnetization parameters.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.