Prediction of protein structural classes by support vector machines

Yu-Dong Cai , Xiao-Jun Liu , Xue-biao Xu , Kuo-Chen Chou
{"title":"Prediction of protein structural classes by support vector machines","authors":"Yu-Dong Cai ,&nbsp;Xiao-Jun Liu ,&nbsp;Xue-biao Xu ,&nbsp;Kuo-Chen Chou","doi":"10.1016/S0097-8485(01)00113-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we apply a new machine learning method which is called support vector machine to approach the prediction of protein structural class. The support vector machine method is performed based on the database derived from SCOP which is based upon domains of known structure and the evolutionary relationships and the principles that govern their 3D structure. As a result, high rates of both self-consistency and jackknife test are obtained. This indicates that the structural class of a protein inconsiderably correlated with its amino acid composition, and the support vector machine can be referred as a powerful computational tool for predicting the structural classes of proteins.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 3","pages":"Pages 293-296"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00113-9","citationCount":"240","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501001139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 240

Abstract

In this paper, we apply a new machine learning method which is called support vector machine to approach the prediction of protein structural class. The support vector machine method is performed based on the database derived from SCOP which is based upon domains of known structure and the evolutionary relationships and the principles that govern their 3D structure. As a result, high rates of both self-consistency and jackknife test are obtained. This indicates that the structural class of a protein inconsiderably correlated with its amino acid composition, and the support vector machine can be referred as a powerful computational tool for predicting the structural classes of proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持向量机预测蛋白质结构类别
本文提出了一种新的机器学习方法——支持向量机,用于蛋白质结构类的预测。支持向量机方法基于SCOP导出的数据库,该数据库基于已知结构域及其演化关系和控制其三维结构的原理。因此,获得了较高的自洽率和刀切率。这表明蛋白质的结构类别与其氨基酸组成的相关性不大,支持向量机可以作为预测蛋白质结构类别的强大计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1