Translesion synthesis by the UmuC family of DNA polymerases

Zhigang Wang
{"title":"Translesion synthesis by the UmuC family of DNA polymerases","authors":"Zhigang Wang","doi":"10.1016/S0921-8777(01)00089-1","DOIUrl":null,"url":null,"abstract":"<div><p>Translesion synthesis is an important cellular mechanism to overcome replication blockage by DNA damage. To copy damaged DNA templates during replication, specialized DNA polymerases are required. Translesion synthesis can be error-free or error-prone. From <em>E. coli</em><span><span> to humans, error-prone translesion synthesis constitutes a major mechanism of DNA damage-induced mutagenesis. As a </span>response to DNA damage during replication, translesion synthesis contributes to cell survival and induced mutagenesis. During 1999–2000, the UmuC superfamily had emerged, which consists of the following prototypic members: the </span><em>E. coli</em> UmuC, the <em>E. coli</em><span> DinB, the yeast Rad30, the human RAD30B, and the yeast Rev1. The corresponding biochemical activities are DNA polymerases V<span>, IV, η, ι, and dCMP transferase<span>, respectively. Recent studies of the UmuC superfamily are summarized and evidence is presented suggesting that this family of DNA polymerases is involved in translesion DNA synthesis.</span></span></span></p></div>","PeriodicalId":100935,"journal":{"name":"Mutation Research/DNA Repair","volume":"486 2","pages":"Pages 59-70"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0921-8777(01)00089-1","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921877701000891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

Translesion synthesis is an important cellular mechanism to overcome replication blockage by DNA damage. To copy damaged DNA templates during replication, specialized DNA polymerases are required. Translesion synthesis can be error-free or error-prone. From E. coli to humans, error-prone translesion synthesis constitutes a major mechanism of DNA damage-induced mutagenesis. As a response to DNA damage during replication, translesion synthesis contributes to cell survival and induced mutagenesis. During 1999–2000, the UmuC superfamily had emerged, which consists of the following prototypic members: the E. coli UmuC, the E. coli DinB, the yeast Rad30, the human RAD30B, and the yeast Rev1. The corresponding biochemical activities are DNA polymerases V, IV, η, ι, and dCMP transferase, respectively. Recent studies of the UmuC superfamily are summarized and evidence is presented suggesting that this family of DNA polymerases is involved in translesion DNA synthesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA聚合酶UmuC家族的翻译合成
翻译合成是克服DNA损伤阻断复制的重要细胞机制。为了在复制过程中复制受损的DNA模板,需要专门的DNA聚合酶。平移合成可以是无错误的,也可以是容易出错的。从大肠杆菌到人类,易出错的翻译合成构成了DNA损伤诱导突变的主要机制。作为对复制过程中DNA损伤的反应,翻译合成有助于细胞存活和诱导诱变。1999-2000年间,UmuC超家族已经出现,它由以下原型成员组成:大肠杆菌UmuC、大肠杆菌DinB、酵母Rad30、人类RAD30B和酵母Rev1。相应的生化活性分别为DNA聚合酶V、IV、η、ι和dCMP转移酶。本文对UmuC超家族的最新研究进行了总结,并提出证据表明该DNA聚合酶家族参与翻译DNA合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
S. cerevisiae has three pathways for DNA interstrand crosslink repair Molecular characterization of ionizing radiation-hypersensitive mutant M10 cells Backbone dynamics of DNA containing 8-oxoguanine: importance for substrate recognition by base excision repair glycosylases Relationship between base excision repair capacity and DNA alkylating agent sensitivity in mouse monocytes Disruption of Xpg increases spontaneous mutation frequency, particularly A:T to C:G transversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1