Reduced sensitivity to and ras mutation spectrum of N-ethyl-N-nitrosourea-induced thymic lymphomas in adult C.B-17 scid mice

Mayumi Nishimura , Shizuko Kakinuma , Shigeharu Wakana , Aya Mukaigawara , Kazuei Mita , Toshihiko Sado , Toshiaki Ogiu , Yoshiya Shimada
{"title":"Reduced sensitivity to and ras mutation spectrum of N-ethyl-N-nitrosourea-induced thymic lymphomas in adult C.B-17 scid mice","authors":"Mayumi Nishimura ,&nbsp;Shizuko Kakinuma ,&nbsp;Shigeharu Wakana ,&nbsp;Aya Mukaigawara ,&nbsp;Kazuei Mita ,&nbsp;Toshihiko Sado ,&nbsp;Toshiaki Ogiu ,&nbsp;Yoshiya Shimada","doi":"10.1016/S0921-8777(01)00098-2","DOIUrl":null,"url":null,"abstract":"<div><p><em>Scid</em> mice are defective in the ability to repair DNA double strand breaks and, as a consequence, their cells are radiosensitive. Further, they have been shown to be prone to develop thymic lymphomas (TLs) after small doses of ionizing radiation. Little is known, however, on the role of <em>scid</em> mutation in chemical carcinogenesis. To determine if <em>scid</em> mutation increased predisposition to chemical carcinogenesis, we examined both the susceptibility of <em>scid</em> mice to <em>N</em>-ethyl-<em>N</em>-nitrosourea (ENU)-induced lymphomagenesis and the involvement of <em>ras</em><span> gene activation. Adult female mice at 8 weeks of age were given ENU in their drinking water at 400</span> <!-->ppm for 2–10 weeks. Contrary to expectations, we observed a two to three-fold reduction in TL development in the <em>scid</em> mice. The highest incidence was achieved by ENU treatment for 8 weeks for <em>scid</em> and wild-type C.B-17 mice, of 42 and 85%, respectively (<em>P</em>&lt;0.05). We investigated whether this was attributable to the usage of the <em>ras</em> mutation pathway. There was, however, no significant difference in the frequency and spectrum of K-<em>ras</em> mutation between the <em>scid</em> and wild-type C.B-17 mice. Most of the K-<em>ras</em><span> mutations were either GGT to GAT transition in codon 12 (11/23: 48%) or CAA to CCA transversion in codon 61 (8/23: 35%) that was independent of </span><em>scid</em> background. The incidence of N-<em>ras</em> mutation was very low. These results indicate that <em>scid</em> mice are less susceptible to ENU-induced lymphomagenesis and <em>ras</em><span> gene mutation frequently occurs in both </span><em>scid</em> and wild-type C.B-17 mice.</p></div>","PeriodicalId":100935,"journal":{"name":"Mutation Research/DNA Repair","volume":"486 4","pages":"Pages 275-283"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0921-8777(01)00098-2","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921877701000982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Scid mice are defective in the ability to repair DNA double strand breaks and, as a consequence, their cells are radiosensitive. Further, they have been shown to be prone to develop thymic lymphomas (TLs) after small doses of ionizing radiation. Little is known, however, on the role of scid mutation in chemical carcinogenesis. To determine if scid mutation increased predisposition to chemical carcinogenesis, we examined both the susceptibility of scid mice to N-ethyl-N-nitrosourea (ENU)-induced lymphomagenesis and the involvement of ras gene activation. Adult female mice at 8 weeks of age were given ENU in their drinking water at 400 ppm for 2–10 weeks. Contrary to expectations, we observed a two to three-fold reduction in TL development in the scid mice. The highest incidence was achieved by ENU treatment for 8 weeks for scid and wild-type C.B-17 mice, of 42 and 85%, respectively (P<0.05). We investigated whether this was attributable to the usage of the ras mutation pathway. There was, however, no significant difference in the frequency and spectrum of K-ras mutation between the scid and wild-type C.B-17 mice. Most of the K-ras mutations were either GGT to GAT transition in codon 12 (11/23: 48%) or CAA to CCA transversion in codon 61 (8/23: 35%) that was independent of scid background. The incidence of N-ras mutation was very low. These results indicate that scid mice are less susceptible to ENU-induced lymphomagenesis and ras gene mutation frequently occurs in both scid and wild-type C.B-17 mice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降低对n -乙基-n -亚硝基源诱导的成年C.B-17小鼠胸腺淋巴瘤的敏感性和ras突变谱
Scid小鼠在修复DNA双链断裂的能力上存在缺陷,因此,它们的细胞对辐射敏感。此外,他们已经被证明在小剂量的电离辐射后容易患上胸腺淋巴瘤(TLs)。然而,scid突变在化学致癌中的作用知之甚少。为了确定scid突变是否会增加化学致癌的易感性,我们检测了scid小鼠对n -乙基-n -亚硝基脲(ENU)诱导的淋巴瘤发生的易感性和ras基因激活的参与。8周龄的成年雌性小鼠在400ppm的饮用水中给予ENU 2-10周。与预期相反,我们观察到scid小鼠的TL发育减少了两到三倍。小鼠和野生型c - b -17小鼠经ENU治疗8周后发病率最高,分别为42%和85% (P<0.05)。我们调查了这是否归因于ras突变途径的使用。然而,小鼠与野生型c - b -17小鼠在K-ras突变的频率和频谱上没有显著差异。大多数K-ras突变为密码子12的GGT到GAT的转换(11/ 23:48 %)或密码子61的CAA到CCA的转换(8/ 23:35 %),与scid背景无关。N-ras突变发生率很低。这些结果表明,scid小鼠对enu诱导的淋巴瘤的易感性较低,ras基因突变在scid小鼠和野生型c - b -17小鼠中都很常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
S. cerevisiae has three pathways for DNA interstrand crosslink repair Molecular characterization of ionizing radiation-hypersensitive mutant M10 cells Backbone dynamics of DNA containing 8-oxoguanine: importance for substrate recognition by base excision repair glycosylases Relationship between base excision repair capacity and DNA alkylating agent sensitivity in mouse monocytes Disruption of Xpg increases spontaneous mutation frequency, particularly A:T to C:G transversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1