{"title":"Microbial Acid Sulfate Weathering of Basaltic Rocks: Implication for Enzymatic Reactions","authors":"Fatih Sekerci, Nurgul Balci","doi":"10.1007/s10498-022-09407-8","DOIUrl":null,"url":null,"abstract":"<div><p>Two basaltic rocks were reacted in acid sulfate and non-acid sulfate solutions with an initial pH value of 2 in the presence and absence of <i>A. ferrooxidans</i> to determine if basalt dissolution can support the metabolically active growth of <i>A. ferrooxidans</i>. Similar elemental release rates (<i>R</i><sub>Si</sub>, <i>R</i><sub>Ca</sub>, <i>R</i><sub>Mg</sub>) calculated for both biotic and abiotic experiments suggest rather a negligible microbial impact on the dissolution of basaltic rocks within the acid sulfate solution. Nevertheless, in contrast with the abiotic experiments, measurements of remarkably high concentration of Fe(III)<sub>aq</sub> in microbial experiments confirmed the bacterial metabolism. Moreover, detected cell division and increasing total cell numbers with the extent of the experiments provide further evidence for the growth of metabolically active <i>A. ferrooxidans</i> during the dissolution of the rocks. Formation of jarosite ((K, Na, H<sub>3</sub>O)Fe<sub>3</sub>(SO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub>) only in the biotic experiments is attributed to the microbially catalyzed Fe(II)<sub>aq</sub> oxidation. Overall, our results showed that acidic solutions that reacted with basaltic rocks can sustain the growth of Fe(II)<sub>aq</sub> oxidizing bacteria. Furthermore, identification of jarosite only in the biotic experiments emphasizes the enzymatic Fe(II) oxidation as the key step for its formation during basalt weathering at acid conditions, highlighting its biosignature potential on Earth and Earth-like planets (e.g., Mars).</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"28 3-4","pages":"155 - 184"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-022-09407-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
Two basaltic rocks were reacted in acid sulfate and non-acid sulfate solutions with an initial pH value of 2 in the presence and absence of A. ferrooxidans to determine if basalt dissolution can support the metabolically active growth of A. ferrooxidans. Similar elemental release rates (RSi, RCa, RMg) calculated for both biotic and abiotic experiments suggest rather a negligible microbial impact on the dissolution of basaltic rocks within the acid sulfate solution. Nevertheless, in contrast with the abiotic experiments, measurements of remarkably high concentration of Fe(III)aq in microbial experiments confirmed the bacterial metabolism. Moreover, detected cell division and increasing total cell numbers with the extent of the experiments provide further evidence for the growth of metabolically active A. ferrooxidans during the dissolution of the rocks. Formation of jarosite ((K, Na, H3O)Fe3(SO4)2(OH)6) only in the biotic experiments is attributed to the microbially catalyzed Fe(II)aq oxidation. Overall, our results showed that acidic solutions that reacted with basaltic rocks can sustain the growth of Fe(II)aq oxidizing bacteria. Furthermore, identification of jarosite only in the biotic experiments emphasizes the enzymatic Fe(II) oxidation as the key step for its formation during basalt weathering at acid conditions, highlighting its biosignature potential on Earth and Earth-like planets (e.g., Mars).
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.