Tran Xuan Bach Nguyen, Kent Rosser, Asanka Perera, Philip Moss, Javaan Chahl
{"title":"Neural network-based optical flow versus traditional optical flow techniques with thermal aerial imaging in real-world settings","authors":"Tran Xuan Bach Nguyen, Kent Rosser, Asanka Perera, Philip Moss, Javaan Chahl","doi":"10.1002/rob.22219","DOIUrl":null,"url":null,"abstract":"<p>The study explores the feasibility of optical flow-based neural network from real-world thermal aerial imagery. While traditional optical flow techniques have shown adequate performance, sparse techniques do not work well during cold-soaked low-contrast conditions, and dense algorithms are more accurate in low-contrast conditions but suffer from the aperture problem in some scenes. On the other hand, optical flow from convolutional neural networks has demonstrated good performance with strong generalization from several synthetic public data set benchmarks. Ground truth was generated from real-world thermal data estimated with traditional dense optical flow techniques. The state-of-the-art Recurrent All-Pairs Field Transform for the Optical Flow model was trained with both color synthetic data and the captured real-world thermal data across various thermal contrast conditions. The results showed strong performance of the deep-learning network against established sparse and dense optical flow techniques in various environments and weather conditions, at the cost of higher computational demand.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"40 7","pages":"1817-1839"},"PeriodicalIF":4.2000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22219","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22219","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study explores the feasibility of optical flow-based neural network from real-world thermal aerial imagery. While traditional optical flow techniques have shown adequate performance, sparse techniques do not work well during cold-soaked low-contrast conditions, and dense algorithms are more accurate in low-contrast conditions but suffer from the aperture problem in some scenes. On the other hand, optical flow from convolutional neural networks has demonstrated good performance with strong generalization from several synthetic public data set benchmarks. Ground truth was generated from real-world thermal data estimated with traditional dense optical flow techniques. The state-of-the-art Recurrent All-Pairs Field Transform for the Optical Flow model was trained with both color synthetic data and the captured real-world thermal data across various thermal contrast conditions. The results showed strong performance of the deep-learning network against established sparse and dense optical flow techniques in various environments and weather conditions, at the cost of higher computational demand.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.