Triphase Photocatalytic CO2 Reduction over Silver-Decorated Titanium Oxide at a Gas–Water Boundary

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2022-02-15 DOI:10.1002/anie.202200802
Dr. Huining Huang, Dr. Run Shi, Dr. Zhenhua Li, Jiaqi Zhao, Prof. Chenliang Su, Prof. Tierui Zhang
{"title":"Triphase Photocatalytic CO2 Reduction over Silver-Decorated Titanium Oxide at a Gas–Water Boundary","authors":"Dr. Huining Huang,&nbsp;Dr. Run Shi,&nbsp;Dr. Zhenhua Li,&nbsp;Jiaqi Zhao,&nbsp;Prof. Chenliang Su,&nbsp;Prof. Tierui Zhang","doi":"10.1002/anie.202200802","DOIUrl":null,"url":null,"abstract":"<p>Photocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) is an attractive process to convert CO<sub>2</sub> into valuable chemicals. But this reaction is often restricted by the poor mass transfer of CO<sub>2</sub> in the liquid phase. Here, we have developed a triphase photocatalytic CO<sub>2</sub>RR system by supporting Ag-decorated TiO<sub>2</sub> nanoparticles at a gas–water boundary with hydrophobic–hydrophilic abrupt interfacial wettability. Such a triphase system allows the rapid delivery of gas-phase CO<sub>2</sub> to the surface of photocatalysts while maintaining an efficient water supply and uncovered active sites. Ag-TiO<sub>2</sub> supported at the gas–water boundary showed a CO<sub>2</sub> reduction rate of 305.7 μmol g<sup>−1</sup> h<sup>−1</sup>, without hole scavengers, approximately 8 times higher than the nanoparticles dispersed in the liquid phase. Even using diluted CO<sub>2</sub> (10 %) as the reactant, the CO<sub>2</sub>RR activity was superior to most reported Ag-TiO<sub>2</sub> based photocatalysts using pure CO<sub>2</sub>. The findings provide a general strategy to promote the interfacial CO<sub>2</sub> mass transfer to improve photoactivity and selectivity.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202200802","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 57

Abstract

Photocatalytic CO2 reduction reaction (CO2RR) is an attractive process to convert CO2 into valuable chemicals. But this reaction is often restricted by the poor mass transfer of CO2 in the liquid phase. Here, we have developed a triphase photocatalytic CO2RR system by supporting Ag-decorated TiO2 nanoparticles at a gas–water boundary with hydrophobic–hydrophilic abrupt interfacial wettability. Such a triphase system allows the rapid delivery of gas-phase CO2 to the surface of photocatalysts while maintaining an efficient water supply and uncovered active sites. Ag-TiO2 supported at the gas–water boundary showed a CO2 reduction rate of 305.7 μmol g−1 h−1, without hole scavengers, approximately 8 times higher than the nanoparticles dispersed in the liquid phase. Even using diluted CO2 (10 %) as the reactant, the CO2RR activity was superior to most reported Ag-TiO2 based photocatalysts using pure CO2. The findings provide a general strategy to promote the interfacial CO2 mass transfer to improve photoactivity and selectivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三相光催化氧化钛在气-水边界上的CO2还原
光催化CO2还原反应(CO2RR)是一种将CO2转化为有价值的化学物质的有吸引力的方法。但这种反应常常受到液相中CO2传质不良的限制。在这里,我们开发了一个三相光催化CO2RR体系,通过在具有疏水-亲水性突变界面润湿性的气-水边界上支持ag修饰的TiO2纳米粒子。这种三相系统可以将气相CO2快速输送到光催化剂表面,同时保持有效的供水和未覆盖的活性位点。在不含空穴清除剂的情况下,气水界负载的Ag-TiO2的CO2还原率为305.7 μmol g−1 h−1,比液相中分散的纳米颗粒高约8倍。即使使用稀释的CO2(10%)作为反应物,CO2RR活性也优于大多数使用纯CO2的Ag-TiO2基光催化剂。该研究结果为促进界面CO2传质以提高光活性和选择性提供了一般策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Reversible Hydrogen Acceptor–Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis A Grafting Hydrogen-bonded Organic Framework for Benchmark Selectivity of C2H2/CO2 Separation under Ambient Conditions A Proteomics Pipeline for Generating Clinical Grade Biomarker Candidates from Data-Independent Acquisition Mass Spectrometry (DIA-MS) Discovery [5]Helicene Based π-Conjugated Macrocycles with Persistent Figure-Eight and Möbius Shapes: Efficient Synthesis, Chiral Resolution and Bright Circularly Polarized Luminescence Formamidinium Incorporates into Rb-based Non-perovskite Phases in Solar Cell Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1